Bayesian Self-Training for Semi-Supervised 3D Segmentation
- URL: http://arxiv.org/abs/2409.08102v1
- Date: Thu, 12 Sep 2024 14:54:31 GMT
- Title: Bayesian Self-Training for Semi-Supervised 3D Segmentation
- Authors: Ozan Unal, Christos Sakaridis, Luc Van Gool,
- Abstract summary: 3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
- Score: 59.544558398992386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D segmentation is a core problem in computer vision and, similarly to many other dense prediction tasks, it requires large amounts of annotated data for adequate training. However, densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive. Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set. This area thus studies the effective use of unlabeled data to reduce the performance gap that arises due to the lack of annotations. In this work, inspired by Bayesian deep learning, we first propose a Bayesian self-training framework for semi-supervised 3D semantic segmentation. Employing stochastic inference, we generate an initial set of pseudo-labels and then filter these based on estimated point-wise uncertainty. By constructing a heuristic $n$-partite matching algorithm, we extend the method to semi-supervised 3D instance segmentation, and finally, with the same building blocks, to dense 3D visual grounding. We demonstrate state-of-the-art results for our semi-supervised method on SemanticKITTI and ScribbleKITTI for 3D semantic segmentation and on ScanNet and S3DIS for 3D instance segmentation. We further achieve substantial improvements in dense 3D visual grounding over supervised-only baselines on ScanRefer. Our project page is available at ouenal.github.io/bst/.
Related papers
- Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
We propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data.
Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches.
arXiv Detail & Related papers (2024-06-24T16:35:58Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
Making sense of 3D environments requires fine-grained scene understanding.
We propose to predict instance segmentations for 3D scenes in an unsupervised way.
Our approach attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline.
arXiv Detail & Related papers (2024-03-24T22:53:16Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
This paper presents U3DS$3$, as a step towards completely unsupervised point cloud segmentation for any holistic 3D scenes.
The initial step of our proposed approach involves generating superpoints based on the geometric characteristics of each scene.
We then undergo a learning process through a spatial clustering-based methodology, followed by iterative training using pseudo-labels generated in accordance with the cluster centroids.
arXiv Detail & Related papers (2023-11-10T12:05:35Z) - You Only Need One Thing One Click: Self-Training for Weakly Supervised
3D Scene Understanding [107.06117227661204]
We propose One Thing One Click'', meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our model can be compatible to 3D instance segmentation equipped with a point-clustering strategy.
arXiv Detail & Related papers (2023-03-26T13:57:00Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
We propose an effective semi-supervised method for learning 3D segmentations from a few labeled 3D shapes and a large amount of unlabeled 3D data.
For the unlabeled data, we present a novel multilevel consistency loss to enforce consistency of network predictions between perturbed copies of a 3D shape.
For the labeled data, we develop a simple yet effective part substitution scheme to augment the labeled 3D shapes with more structural variations to enhance training.
arXiv Detail & Related papers (2022-04-19T11:48:24Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
We train a semantic point cloud segmentation network with only a small portion of points being labeled.
We propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples.
Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
arXiv Detail & Related papers (2021-07-23T14:34:57Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
We propose "One Thing One Click," meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our results are also comparable to those of the fully supervised counterparts.
arXiv Detail & Related papers (2021-04-06T02:27:25Z) - PointContrast: Unsupervised Pre-training for 3D Point Cloud
Understanding [107.02479689909164]
In this work, we aim at facilitating research on 3D representation learning.
We measure the effect of unsupervised pre-training on a large source set of 3D scenes.
arXiv Detail & Related papers (2020-07-21T17:59:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.