Quantum state tomography with disentanglement algorithm
- URL: http://arxiv.org/abs/2310.06273v4
- Date: Sat, 29 Jun 2024 06:45:33 GMT
- Title: Quantum state tomography with disentanglement algorithm
- Authors: Juan Yao,
- Abstract summary: We use variational quantum circuits to disentangle the quantum state to a product of computational zero states.
Inverse evolution of the zero states reconstructs the quantum state up to an overall phase.
Our method is universal and imposes no specific ansatz or constrain on the quantum state.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work, we report on a novel quantum state reconstruction process based on the disentanglement algorithm. Using variational quantum circuits, we disentangle the quantum state to a product of computational zero states. Inverse evolution of the zero states reconstructs the quantum state up to an overall phase. By sequentially disentangling the qubit one by one, we reduce the required measurements with only single qubit measurement. Demonstrations with our proposal for the reconstruction of the random states are presented where variational quantum circuit is optimized by disentangling process. To facilitate experimental implementation, we also employ reinforcement learning for quantum circuit design with limited discrete quantum gates. Our method is universal and imposes no specific ansatz or constrain on the quantum state.
Related papers
- Realization of Constant-Depth Fan-Out with Real-Time Feedforward on a Superconducting Quantum Processor [33.096693427147535]
We demonstrate a quantum fan-out gate with real-time feedforward on up to four output qubits using a superconducting quantum processor.
Our work highlights the potential of mid-circuit measurements combined with real-time conditional operations to improve the efficiency of complex quantum algorithms.
arXiv Detail & Related papers (2024-09-11T03:40:24Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Streaming quantum state purification [4.189670490218164]
Quantum state purification is the task of recovering a nearly pure copy of an unknown pure quantum state.
This basic task has applications to quantum communication over noisy channels and quantum computation with imperfect devices.
We derive an efficient purification procedure based on the swap test for qudits of any dimension.
arXiv Detail & Related papers (2023-09-28T12:33:09Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universal quantum algorithmic cooling on a quantum computer [0.688204255655161]
We show how to universally and deterministically realize a general cooling procedure with shallow quantum circuits.
Our work paves the way for efficient and universal quantum algorithmic cooling with near-term as well as universal fault-tolerant quantum devices.
arXiv Detail & Related papers (2021-09-30T17:50:39Z) - Variational quantum process tomography [12.843681115589122]
We put forward a quantum machine learning algorithm which encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit.
Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
arXiv Detail & Related papers (2021-08-05T03:36:26Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.