Three-Dimensional Medical Image Fusion with Deformable Cross-Attention
- URL: http://arxiv.org/abs/2310.06291v1
- Date: Tue, 10 Oct 2023 04:10:56 GMT
- Title: Three-Dimensional Medical Image Fusion with Deformable Cross-Attention
- Authors: Lin Liu, Xinxin Fan, Chulong Zhang, Jingjing Dai, Yaoqin Xie, Xiaokun
Liang
- Abstract summary: Multimodal medical image fusion plays an instrumental role in several areas of medical image processing.
Traditional fusion methods tend to process each modality independently before combining the features and reconstructing the fusion image.
In this study, we introduce an innovative unsupervised feature mutual learning fusion network designed to rectify these limitations.
- Score: 10.26573411162757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal medical image fusion plays an instrumental role in several areas
of medical image processing, particularly in disease recognition and tumor
detection. Traditional fusion methods tend to process each modality
independently before combining the features and reconstructing the fusion
image. However, this approach often neglects the fundamental commonalities and
disparities between multimodal information. Furthermore, the prevailing
methodologies are largely confined to fusing two-dimensional (2D) medical image
slices, leading to a lack of contextual supervision in the fusion images and
subsequently, a decreased information yield for physicians relative to
three-dimensional (3D) images. In this study, we introduce an innovative
unsupervised feature mutual learning fusion network designed to rectify these
limitations. Our approach incorporates a Deformable Cross Feature Blend (DCFB)
module that facilitates the dual modalities in discerning their respective
similarities and differences. We have applied our model to the fusion of 3D MRI
and PET images obtained from 660 patients in the Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset. Through the application of the DCFB
module, our network generates high-quality MRI-PET fusion images. Experimental
results demonstrate that our method surpasses traditional 2D image fusion
methods in performance metrics such as Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM). Importantly, the capacity of our
method to fuse 3D images enhances the information available to physicians and
researchers, thus marking a significant step forward in the field. The code
will soon be available online.
Related papers
- Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model [2.507050016527729]
Tri-modal medical image fusion can provide a more comprehensive view of the disease's shape, location, and biological activity.
Due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited.
There is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information.
arXiv Detail & Related papers (2024-04-26T12:13:41Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - A New Multimodal Medical Image Fusion based on Laplacian Autoencoder
with Channel Attention [3.1531360678320897]
Deep learning models have achieved end-to-end image fusion with highly robust and accurate performance.
Most DL-based fusion models perform down-sampling on the input images to minimize the number of learnable parameters and computations.
We propose a new multimodal medical image fusion model is proposed that is based on integrated Laplacian-Gaussian concatenation with attention pooling.
arXiv Detail & Related papers (2023-10-18T11:29:53Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Equivariant Multi-Modality Image Fusion [124.11300001864579]
We propose the Equivariant Multi-Modality imAge fusion paradigm for end-to-end self-supervised learning.
Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations.
Experiments confirm that EMMA yields high-quality fusion results for infrared-visible and medical images.
arXiv Detail & Related papers (2023-05-19T05:50:24Z) - An Attention-based Multi-Scale Feature Learning Network for Multimodal
Medical Image Fusion [24.415389503712596]
Multimodal medical images could provide rich information about patients for physicians to diagnose.
The image fusion technique is able to synthesize complementary information from multimodal images into a single image.
We introduce a novel Dilated Residual Attention Network for the medical image fusion task.
arXiv Detail & Related papers (2022-12-09T04:19:43Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multimodal Information Fusion for Glaucoma and DR Classification [1.5616442980374279]
Multimodal information is frequently available in medical tasks. By combining information from multiple sources, clinicians are able to make more accurate judgments.
Our paper investigates three multimodal information fusion strategies based on deep learning to solve retinal analysis tasks.
arXiv Detail & Related papers (2022-09-02T12:19:03Z) - Coupled Feature Learning for Multimodal Medical Image Fusion [42.23662451234756]
Multimodal image fusion aims to combine relevant information from images acquired with different sensors.
In this paper, we propose a novel multimodal image fusion method based on coupled dictionary learning.
arXiv Detail & Related papers (2021-02-17T09:13:28Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.