Harnessing Administrative Data Inventories to Create a Reliable
Transnational Reference Database for Crop Type Monitoring
- URL: http://arxiv.org/abs/2310.06393v1
- Date: Tue, 10 Oct 2023 07:57:00 GMT
- Title: Harnessing Administrative Data Inventories to Create a Reliable
Transnational Reference Database for Crop Type Monitoring
- Authors: Maja Schneider and Marco K\"orner
- Abstract summary: We showcase E URO C ROPS, a reference dataset for crop type classification that aggregates and harmonizes administrative data surveyed in different countries with the goal of transnational interoperability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With leaps in machine learning techniques and their applicationon Earth
observation challenges has unlocked unprecedented performance across the
domain. While the further development of these methods was previously limited
by the availability and volume of sensor data and computing resources, the lack
of adequate reference data is now constituting new bottlenecks. Since creating
such ground-truth information is an expensive and error-prone task, new ways
must be devised to source reliable, high-quality reference data on large
scales. As an example, we showcase E URO C ROPS, a reference dataset for crop
type classification that aggregates and harmonizes administrative data surveyed
in different countries with the goal of transnational interoperability.
Related papers
- Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STAR is a data generation method that leverages Large Language Models (LLMs) to synthesize data instances.
We design fine-grained step-by-step instructions to obtain the initial data instances.
Our experiments show that the data generated by STAR significantly improve the performance of low-resource event extraction and relation extraction tasks.
arXiv Detail & Related papers (2023-05-24T12:15:19Z) - Hub-VAE: Unsupervised Hub-based Regularization of Variational
Autoencoders [11.252245456934348]
We propose an unsupervised, data-driven regularization of the latent space with a mixture of hub-based priors and a hub-based contrastive loss.
Our algorithm achieves superior cluster separability in the embedding space, and accurate data reconstruction and generation.
arXiv Detail & Related papers (2022-11-18T19:12:15Z) - Federated Anomaly Detection over Distributed Data Streams [0.0]
We propose an approach to building the bridge among anomaly detection, federated learning, and data streams.
The overarching goal of the work is to detect anomalies in a federated environment over distributed data streams.
arXiv Detail & Related papers (2022-05-16T17:38:58Z) - Building Inspection Toolkit: Unified Evaluation and Strong Baselines for
Damage Recognition [0.0]
We introduce the building inspection toolkit -- bikit -- which acts as a simple to use data hub containing relevant open-source datasets in the field of damage recognition.
The datasets are enriched with evaluation splits and predefined metrics, suiting the specific task and their data distribution.
For the sake of compatibility and to motivate researchers in this domain, we also provide a leaderboard and the possibility to share model weights with the community.
arXiv Detail & Related papers (2022-02-14T20:05:59Z) - Deep Transfer Learning for Multi-source Entity Linkage via Domain
Adaptation [63.24594955429465]
Multi-source entity linkage is critical in high-impact applications such as data cleaning and user stitching.
AdaMEL is a deep transfer learning framework that learns generic high-level knowledge to perform multi-source entity linkage.
Our framework achieves state-of-the-art results with 8.21% improvement on average over methods based on supervised learning.
arXiv Detail & Related papers (2021-10-27T15:20:41Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
We present a novel Adversarial Knowledge Transfer framework for transferring knowledge from internet-scale unlabeled data to improve the performance of a classifier.
An important novel aspect of our method is that the unlabeled source data can be of different classes from those of the labeled target data, and there is no need to define a separate pretext task.
arXiv Detail & Related papers (2020-08-13T08:04:27Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.