Detecting multipartite entanglement via complete orthogonal basis
- URL: http://arxiv.org/abs/2310.06431v1
- Date: Tue, 10 Oct 2023 08:54:16 GMT
- Title: Detecting multipartite entanglement via complete orthogonal basis
- Authors: Hui Zhao, Jia Hao, Jing Li, Shao-Ming Fei, Naihuan Jing and Zhi-Xi
Wang
- Abstract summary: We derive useful and operational criteria to detect genuine tripartite entanglement and multipartite entanglement.
We study multipartite entanglement in arbitrary dimensional multipartite systems.
- Score: 4.421825850868445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study genuine tripartite entanglement and multipartite entanglement in
arbitrary $n$-partite quantum systems based on complete orthogonal basis (COB).
While the usual Bloch representation of a density matrix uses three types of
generators, the density matrix with COB operators has one uniformed type of
generators which may simplify related computations. We take the advantage of
this simplicity to derive useful and operational criteria to detect genuine
tripartite entanglement and multipartite entanglement. We first convert the
general states to simpler forms by using the relationship between general
symmetric informationally complete measurements and COB. Then we derive an
operational criteria to detect genuine tripartite entanglement. We study
multipartite entanglement in arbitrary dimensional multipartite systems. By
providing detailed examples, we demonstrate that our criteria can detect more
genuine entangled and multipartite entangled states than the previously
existing criteria.
Related papers
- Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Detection of Genuine Multipartite Entanglement in Arbitrary Multipartite
systems [5.759560029580599]
We study the genuine multipartite entanglement of arbitrary $n$-partite quantum states.
We introduce a general framework for detecting genuine multipartite entanglement and non full-separability of multipartite quantum states.
arXiv Detail & Related papers (2023-08-07T01:44:48Z) - Detection of entanglement for multipartite quantum states [1.4550422197805504]
We study genuine tripartite entanglement and multipartite entanglement of arbitrary $n$-partite quantum states.
We derive useful and operational criteria to detect genuine tripartite entanglement.
We also obtain a sufficient criterion to detect entanglement for multipartite quantum states in arbitrary dimensions.
arXiv Detail & Related papers (2023-02-17T02:25:44Z) - Criteria of genuine multipartite entanglement based on correlation
tensors [0.0]
We revisit the genuine multipartite entanglement by a simplified method, which only involves the Schmidt decomposition and local unitary transformation.
We construct a local unitary equivalent class of the tri-qubit quantum state, then use the trace norm of the whole correlation tensor as a measurement to detect genuine multipartite entanglement.
arXiv Detail & Related papers (2023-01-16T15:08:33Z) - Bounding entanglement dimensionality from the covariance matrix [1.8749305679160366]
High-dimensional entanglement has been identified as an important resource in quantum information processing.
Most widely used methods for experiments are based on fidelity measurements with respect to highly entangled states.
Here, instead, we consider covariances of collective observables, as in the well-known Covariance Matrix Criterion.
arXiv Detail & Related papers (2022-08-09T17:11:44Z) - Detection of genuine tripartite entanglement based on Bloch
representation of densitymatrices [1.3319340093980596]
We study the genuine multipartite entanglement in tripartite quantum systems.
By using the Schmidt decomposition and local unitary transformation, we convert the general states to simpler forms.
Using these special matrices, we obtain new criteria for genuine multipartite entanglement.
arXiv Detail & Related papers (2022-03-27T02:07:23Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
We introduce a broad family of probability metrics, coined as Generalized Sliced Probability Metrics (GSPMs)
GSPMs are rooted in the generalized Radon transform and come with a unique geometric interpretation.
We consider GSPM-based gradient flows for generative modeling applications and show that under mild assumptions, the gradient flow converges to the global optimum.
arXiv Detail & Related papers (2020-02-28T04:18:00Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.