Bounding entanglement dimensionality from the covariance matrix
- URL: http://arxiv.org/abs/2208.04909v5
- Date: Sun, 21 Jan 2024 01:20:57 GMT
- Title: Bounding entanglement dimensionality from the covariance matrix
- Authors: Shuheng Liu, Matteo Fadel, Qiongyi He, Marcus Huber and Giuseppe
Vitagliano
- Abstract summary: High-dimensional entanglement has been identified as an important resource in quantum information processing.
Most widely used methods for experiments are based on fidelity measurements with respect to highly entangled states.
Here, instead, we consider covariances of collective observables, as in the well-known Covariance Matrix Criterion.
- Score: 1.8749305679160366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional entanglement has been identified as an important resource in
quantum information processing, and also as a main obstacle for simulating
quantum systems. Its certification is often difficult, and most widely used
methods for experiments are based on fidelity measurements with respect to
highly entangled states. Here, instead, we consider covariances of collective
observables, as in the well-known Covariance Matrix Criterion (CMC)[1] and
present a generalization of the CMC for determining the Schmidt number of a
bipartite system. This is potentially particularly advantageous in many-body
systems, such as cold atoms, where the set of practical measurements is very
limited and only variances of collective operators can typically be estimated.
To show the practical relevance of our results, we derive simpler
Schmidt-number criteria that require similar information as the fidelity-based
witnesses, yet can detect a wider set of states. We also consider paradigmatic
criteria based on spin covariances, which would be very helpful for
experimental detection of high-dimensional entanglement in cold atom systems.
We conclude by discussing the applicability of our results to a multiparticle
ensemble and some open questions for future work.
Related papers
- Scalable multipartite entanglement criteria for continuous variables [6.181008505226926]
We propose a quite general entanglement detection method for all kinds of multipartite entanglement of multimode continuous variable systems.
Our criterion can detect entanglement, genuine entanglement and other kinds of inseparabilities almost imidiately.
arXiv Detail & Related papers (2024-11-05T13:27:19Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - How to harness high-dimensional temporal entanglement, using limited
interferometry setups [62.997667081978825]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Almost qudits in the prepare-and-measure scenario [0.0]
We introduce and investigate quantum information encoded in carriers that nearly, but not entirely, correspond to standard qudits.
We show how small higher-dimensional components can significantly compromise the conclusions of established protocols.
We also consider viewing almost qubit systems as a physical resource available to the experimenter.
arXiv Detail & Related papers (2022-08-16T18:00:07Z) - Informationally complete measures of quantum entanglement [0.0]
We introduce a family of entanglement measures which are given by the complete eigenvalues of the reduced density matrices of the system.
It is demonstrated that such ICEMs can characterize finer and distinguish better the entanglement than existing well-known entanglement measures.
arXiv Detail & Related papers (2022-06-22T19:27:07Z) - Entanglement quantification in atomic ensembles [0.0]
Entanglement measures quantify nonclassical correlations present in a quantum system.
We consider broad families of entanglement criteria based on variances of arbitrary operators.
We quantify bipartite and multipartite entanglement in spin-squeezed Bose-Einstein condensates of $sim 500$ atoms.
arXiv Detail & Related papers (2021-03-29T16:17:12Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
We introduce a broad family of probability metrics, coined as Generalized Sliced Probability Metrics (GSPMs)
GSPMs are rooted in the generalized Radon transform and come with a unique geometric interpretation.
We consider GSPM-based gradient flows for generative modeling applications and show that under mild assumptions, the gradient flow converges to the global optimum.
arXiv Detail & Related papers (2020-02-28T04:18:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.