論文の概要: Watt For What: Rethinking Deep Learning's Energy-Performance Relationship
- arxiv url: http://arxiv.org/abs/2310.06522v2
- Date: Tue, 17 Sep 2024 14:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:50:44.596319
- Title: Watt For What: Rethinking Deep Learning's Energy-Performance Relationship
- Title(参考訳): Watt For What: Rethinking Deep Learning's Energy-Performance Relationship
- Authors: Shreyank N Gowda, Xinyue Hao, Gen Li, Shashank Narayana Gowda, Xiaobo Jin, Laura Sevilla-Lara,
- Abstract要約: 深層学習モデルのモデル精度と消費電力のトレードオフについて検討する。
使用電力単位当たりの精度を評価することにより、より小型でエネルギー効率の高いモデルが研究を著しく高速化できることを示す。
この研究は、より公平な研究環境に寄与し、より小さなエンティティはより大きなエンティティと効果的に競合できる。
- 参考スコア(独自算出の注目度): 13.505163099299025
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning models have revolutionized various fields, from image recognition to natural language processing, by achieving unprecedented levels of accuracy. However, their increasing energy consumption has raised concerns about their environmental impact, disadvantaging smaller entities in research and exacerbating global energy consumption. In this paper, we explore the trade-off between model accuracy and electricity consumption, proposing a metric that penalizes large consumption of electricity. We conduct a comprehensive study on the electricity consumption of various deep learning models across different GPUs, presenting a detailed analysis of their accuracy-efficiency trade-offs. By evaluating accuracy per unit of electricity consumed, we demonstrate how smaller, more energy-efficient models can significantly expedite research while mitigating environmental concerns. Our results highlight the potential for a more sustainable approach to deep learning, emphasizing the importance of optimizing models for efficiency. This research also contributes to a more equitable research landscape, where smaller entities can compete effectively with larger counterparts. This advocates for the adoption of efficient deep learning practices to reduce electricity consumption, safeguarding the environment for future generations whilst also helping ensure a fairer competitive landscape.
- Abstract(参考訳): ディープラーニングモデルは、画像認識から自然言語処理に至るまで、前例のないレベルの精度を達成することによって、様々な分野に革命をもたらした。
しかし、そのエネルギー消費の増加は、環境への影響を懸念し、研究において小さな実体を弱体化させ、世界のエネルギー消費を悪化させている。
本稿では,モデル精度と電力消費のトレードオフを考察し,大容量の電力消費をペナルティ化する指標を提案する。
我々は、様々なGPUにわたる様々なディープラーニングモデルの消費電力に関する総合的な研究を行い、それらの精度と効率のトレードオフを詳細に分析した。
電力消費単位当たりの精度を評価することにより, 環境負荷を軽減しつつ, より小型でエネルギー効率の高いモデルが研究を著しく高速化できることを示す。
我々の結果は、より持続可能なディープラーニングアプローチの可能性を強調し、効率性のためにモデルを最適化することの重要性を強調した。
この研究は、小さなエンティティがより大きなエンティティと効果的に競合できる、より公平な研究ランドスケープにも貢献する。
これは、電力消費を減らすための効率的なディープラーニングの実践の導入を提唱し、将来の世代のための環境の保護と、より公正な競争環境の確保を支援している。
関連論文リスト
- Just In Time Transformers [2.7350304370706797]
JITtransは,エネルギー消費予測精度を大幅に向上させる,トランスフォーマー深層学習モデルである。
本研究は, エネルギー管理を革新し, 持続可能な電力システムを構築するための先進的な予測技術の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-10-22T10:33:00Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - How to use model architecture and training environment to estimate the energy consumption of DL training [5.190998244098203]
本研究は,Deep Learning Trainingにおけるエネルギー消費と2つの関連する設計決定との関係を活用することを目的とする。
本研究では, トレーニングの消費電力特性について検討し, 4つの新しいエネルギー推定法を提案する。
その結果、適切なモデルアーキテクチャとトレーニング環境を選択することで、エネルギー消費を劇的に削減できることがわかった。
論文 参考訳(メタデータ) (2023-07-07T12:07:59Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Uncovering Energy-Efficient Practices in Deep Learning Training:
Preliminary Steps Towards Green AI [8.025202812165412]
我々は、エネルギー消費を精度に等しい重要性の指標とみなし、無関係なタスクやエネルギー使用量を減らす。
持続可能性の観点から深層学習パイプラインの訓練段階について検討する。
ディープラーニングモデルをトレーニングするための革新的で有望なエネルギー効率のプラクティスを強調します。
論文 参考訳(メタデータ) (2023-03-24T12:48:21Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
ディープラーニングモデルの評価は、伝統的に精度、F1スコア、関連する指標などの基準に焦点を当ててきた。
このようなモデルを訓練するために必要な計算は、大きな炭素フットプリントを必要とする。
本研究では, DLモデルアーキテクチャと環境影響との関係を, エネルギー消費の観点から検討した。
論文 参考訳(メタデータ) (2023-02-02T09:20:54Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
コンピュータビジョンと自然言語処理の分野における関連モデルについて検討する。
継続的な性能向上のために、これまで予想されていたよりもエネルギー消費の軟化が見られた。
論文 参考訳(メタデータ) (2021-09-12T09:40:18Z) - Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision [31.781943982148025]
我々は,効率的なコンピュータビジョンモデルのための最初の大規模エネルギー消費ベンチマークを示す。
モデル利用強度の異なる全サイクルエネルギー消費を明示的に評価するための新しい指標を提案する。
論文 参考訳(メタデータ) (2021-08-30T18:22:36Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。