FTFT: Efficient and Robust Fine-Tuning by Transferring Training Dynamics
- URL: http://arxiv.org/abs/2310.06588v2
- Date: Fri, 29 Mar 2024 23:53:28 GMT
- Title: FTFT: Efficient and Robust Fine-Tuning by Transferring Training Dynamics
- Authors: Yupei Du, Albert Gatt, Dong Nguyen,
- Abstract summary: We show that training dynamics are highly transferable across model sizes and pre-training methods.
We propose a novel fine-tuning approach: Fine-Tuning by transFerring Training dynamics (FTFT)
- Score: 7.58472343957521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the massive success of fine-tuning Pre-trained Language Models (PLMs), they remain susceptible to out-of-distribution input. Dataset cartography is a simple yet effective dual-model approach that improves the robustness of fine-tuned PLMs. It involves fine-tuning a model on the original training set (i.e. reference model), selecting a subset of important training instances based on the training dynamics, and fine-tuning again only on these selected examples (i.e. main model). However, this approach requires fine-tuning the same model twice, which is computationally expensive for large PLMs. In this paper, we show that (1) training dynamics are highly transferable across model sizes and pre-training methods, and that (2) fine-tuning main models using these selected training instances achieves higher training efficiency than empirical risk minimization (ERM). Building on these observations, we propose a novel fine-tuning approach: Fine-Tuning by transFerring Training dynamics (FTFT). Compared with dataset cartography, FTFT uses more efficient reference models and aggressive early stopping. FTFT achieves robustness improvements over ERM while lowering the training cost by up to $\sim 50\%$.
Related papers
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Transferring Knowledge from Large Foundation Models to Small Downstream Models [40.38657103236168]
We introduce Adaptive Feature Transfer (AFT) to transfer knowledge between pre-trained models.
AFT operates purely on features, decoupling the choice of the pre-trained model from the smaller downstream model.
AFT achieves significantly better downstream performance compared to alternatives with a similar computational cost.
arXiv Detail & Related papers (2024-06-11T15:06:15Z) - AutoFT: Learning an Objective for Robust Fine-Tuning [60.641186718253735]
Foundation models encode rich representations that can be adapted to downstream tasks by fine-tuning.
Current approaches to robust fine-tuning use hand-crafted regularization techniques.
We propose AutoFT, a data-driven approach for robust fine-tuning.
arXiv Detail & Related papers (2024-01-18T18:58:49Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Reusing Pretrained Models by Multi-linear Operators for Efficient
Training [65.64075958382034]
Training large models from scratch usually costs a substantial amount of resources.
Recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model.
We propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model.
arXiv Detail & Related papers (2023-10-16T06:16:47Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
Large-scale transformer models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch.
To reduce the number of parameters in the GPT-2 architecture, we replace the matrices of fully-connected layers with the corresponding Train Matrix(TTM) structure.
The resulting GPT-based model stores up to 40% fewer parameters, showing the perplexity comparable to the original model.
arXiv Detail & Related papers (2023-06-05T08:38:25Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.