Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- URL: http://arxiv.org/abs/2409.06131v2
- Date: Tue, 28 Jan 2025 19:18:51 GMT
- Title: Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review
- Authors: Neha Prakriya, Jui-Nan Yen, Cho-Jui Hsieh, Jason Cong,
- Abstract summary: Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
- Score: 50.78587571704713
- License:
- Abstract: Traditional Large Language Model (LLM) pretraining relies on autoregressive language modeling with randomly sampled data from web-scale datasets. Inspired by human learning techniques like spaced repetition, we hypothesize that random sampling leads to high training costs, lower-quality models, and significant data forgetting. To address these inefficiencies, we propose the Learn-Focus-Review (LFR) paradigm -- a dynamic training approach that adapts to the model's learning progress. LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset that are more prone to being forgotten, enabling better retention and more efficient learning. Using the LFR paradigm, we pretrained Llama and GPT models on the SlimPajama and OpenWebText datasets, respectively. These models were evaluated on downstream tasks across various domains, including question answering, problem-solving, commonsense reasoning, language modeling, and translation. Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy, while using only 5%--19% of the training tokens. Furthermore, LFR matched the performance of industry-standard Pythia models with up to 2$\times$ the parameter count, using just 3.2% of the training tokens, demonstrating its effectiveness and efficiency.
Related papers
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
Large Language Models (LLMs) generate text representative of diverse sub-populations.
We propose a novel clustering-based active learning framework, enhanced with knowledge distillation.
We construct two new datasets in tandem with model training, showing a performance improvement of 2%-10% over baseline models.
arXiv Detail & Related papers (2024-10-17T15:09:35Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language
Models [4.114555639014612]
We show the benefits of using unstructured weight sparsity to train only a subset of weights during pre-training.
We demonstrate that we can induce up to 75% sparsity into a 1.3B parameter GPT-3 XL model resulting in a 2.5x reduction in pre-training FLOPs.
arXiv Detail & Related papers (2023-03-18T17:56:01Z) - Efficient Training of Language Models to Fill in the Middle [17.118891860985123]
We show that autoregressive language models can learn to infill text after we apply a straightforward transformation to the dataset.
We use these ablations to prescribe strong default settings and best practices to train FIM models.
We have released our best infilling model trained with best practices in our API, and release our infilling benchmarks to aid future research.
arXiv Detail & Related papers (2022-07-28T17:40:47Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.