HYVE: Hybrid Vertex Encoder for Neural Distance Fields
- URL: http://arxiv.org/abs/2310.06644v3
- Date: Wed, 21 Aug 2024 15:53:02 GMT
- Title: HYVE: Hybrid Vertex Encoder for Neural Distance Fields
- Authors: Stefan Rhys Jeske, Jonathan Klein, Dominik L. Michels, Jan Bender,
- Abstract summary: We present a neural-network architecture suitable for accurate encoding of 3D shapes in a single forward pass.
Our network is able to output valid signed distance fields without explicit prior knowledge of non-zero distance values or shape occupancy.
- Score: 9.40036617308303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural shape representation generally refers to representing 3D geometry using neural networks, e.g., computing a signed distance or occupancy value at a specific spatial position. In this paper we present a neural-network architecture suitable for accurate encoding of 3D shapes in a single forward pass. Our architecture is based on a multi-scale hybrid system incorporating graph-based and voxel-based components, as well as a continuously differentiable decoder. The hybrid system includes a novel way of voxelizing point-based features in neural networks, which we show can be used in combination with oriented point-clouds to obtain smoother and more detailed reconstructions. Furthermore, our network is trained to solve the eikonal equation and only requires knowledge of the zero-level set for training and inference. This means that in contrast to most previous shape encoder architectures, our network is able to output valid signed distance fields without explicit prior knowledge of non-zero distance values or shape occupancy. It also requires only a single forward-pass, instead of the latent-code optimization used in auto-decoder methods. We further propose a modification to the loss function in case that surface normals are not well defined, e.g., in the context of non-watertight surfaces and non-manifold geometry, resulting in an unsigned distance field. Overall, our system can help to reduce the computational overhead of training and evaluating neural distance fields, as well as enabling the application to difficult geometry.
Related papers
- Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - Neural Contourlet Network for Monocular 360 Depth Estimation [37.82642960470551]
We provide a new perspective that constructs an interpretable and sparse representation for a 360 image.
We propose a neural contourlet network consisting of a convolutional neural network and a contourlet transform branch.
In the encoder stage, we design a spatial-spectral fusion module to effectively fuse two types of cues.
arXiv Detail & Related papers (2022-08-03T02:25:55Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Dual Octree Graph Networks for Learning Adaptive Volumetric Shape
Representations [21.59311861556396]
Our method encodes the volumetric field of a 3D shape with an adaptive feature volume organized by an octree.
An encoder-decoder network is designed to learn the adaptive feature volume based on the graph convolutions over the dual graph of octree nodes.
Our method effectively encodes shape details, enables fast 3D shape reconstruction, and exhibits good generality for modeling 3D shapes out of training categories.
arXiv Detail & Related papers (2022-05-05T17:56:34Z) - HyperCube: Implicit Field Representations of Voxelized 3D Models [18.868266675878996]
We introduce a new HyperCube architecture that enables direct processing of 3D voxels.
Instead of processing individual 3D samples from within a voxel, our approach allows to input the entire voxel represented with its convex hull coordinates.
arXiv Detail & Related papers (2021-10-12T06:56:48Z) - Neural-Pull: Learning Signed Distance Functions from Point Clouds by
Learning to Pull Space onto Surfaces [68.12457459590921]
Reconstructing continuous surfaces from 3D point clouds is a fundamental operation in 3D geometry processing.
We introduce textitNeural-Pull, a new approach that is simple and leads to high quality SDFs.
arXiv Detail & Related papers (2020-11-26T23:18:10Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z) - On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes [38.13954772608884]
A neural implicit outputs a number indicating whether the given query point in space is inside, outside, or on a surface.
Prior works have focused on _latent-encoded_ neural implicits, where a latent vector encoding of a specific shape is also fed as input.
A _weight-encoded_ neural implicit may forgo the latent vector and focus reconstruction accuracy on the details of a single shape.
arXiv Detail & Related papers (2020-09-17T23:10:19Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.