Optimizing 3D Geometry Reconstruction from Implicit Neural Representations
- URL: http://arxiv.org/abs/2410.12725v1
- Date: Wed, 16 Oct 2024 16:36:23 GMT
- Title: Optimizing 3D Geometry Reconstruction from Implicit Neural Representations
- Authors: Shen Fan, Przemyslaw Musialski,
- Abstract summary: Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
- Score: 2.3940819037450987
- License:
- Abstract: Implicit neural representations have emerged as a powerful tool in learning 3D geometry, offering unparalleled advantages over conventional representations like mesh-based methods. A common type of INR implicitly encodes a shape's boundary as the zero-level set of the learned continuous function and learns a mapping from a low-dimensional latent space to the space of all possible shapes represented by its signed distance function. However, most INRs struggle to retain high-frequency details, which are crucial for accurate geometric depiction, and they are computationally expensive. To address these limitations, we present a novel approach that both reduces computational expenses and enhances the capture of fine details. Our method integrates periodic activation functions, positional encodings, and normals into the neural network architecture. This integration significantly enhances the model's ability to learn the entire space of 3D shapes while preserving intricate details and sharp features, areas where conventional representations often fall short.
Related papers
- Learning Unsigned Distance Fields from Local Shape Functions for 3D Surface Reconstruction [42.840655419509346]
This paper presents a novel neural framework, LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging local shape functions to learn UDFs.
We observe that 3D shapes manifest simple patterns within localized areas, prompting us to create a training dataset of point cloud patches.
Our approach learns features within a specific radius around each query point and utilizes an attention mechanism to focus on the crucial features for UDF estimation.
arXiv Detail & Related papers (2024-07-01T14:39:03Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - HYVE: Hybrid Vertex Encoder for Neural Distance Fields [9.40036617308303]
We present a neural-network architecture suitable for accurate encoding of 3D shapes in a single forward pass.
Our network is able to output valid signed distance fields without explicit prior knowledge of non-zero distance values or shape occupancy.
arXiv Detail & Related papers (2023-10-10T14:07:37Z) - Coordinates Are NOT Lonely -- Codebook Prior Helps Implicit Neural 3D
Representations [29.756718435405983]
Implicit neural 3D representation has achieved impressive results in surface or scene reconstruction and novel view synthesis.
Existing approaches, such as Neural Radiance Field (NeRF) and its variants, usually require dense input views.
We introduce a novel coordinate-based model, CoCo-INR, for implicit neural 3D representation.
arXiv Detail & Related papers (2022-10-20T11:13:50Z) - Neural Convolutional Surfaces [59.172308741945336]
This work is concerned with a representation of shapes that disentangles fine, local and possibly repeating geometry, from global, coarse structures.
We show that this approach achieves better neural shape compression than the state of the art, as well as enabling manipulation and transfer of shape details.
arXiv Detail & Related papers (2022-04-05T15:40:11Z) - Learning Smooth Neural Functions via Lipschitz Regularization [92.42667575719048]
We introduce a novel regularization designed to encourage smooth latent spaces in neural fields.
Compared with prior Lipschitz regularized networks, ours is computationally fast and can be implemented in four lines of code.
arXiv Detail & Related papers (2022-02-16T21:24:54Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.