Domain Generalization by Rejecting Extreme Augmentations
- URL: http://arxiv.org/abs/2310.06670v1
- Date: Tue, 10 Oct 2023 14:46:22 GMT
- Title: Domain Generalization by Rejecting Extreme Augmentations
- Authors: Masih Aminbeidokhti, Fidel A. Guerrero Pe\~na, Heitor Rapela Medeiros,
Thomas Dubail, Eric Granger, Marco Pedersoli
- Abstract summary: We show that for out-of-domain and domain generalization settings, data augmentation can provide a conspicuous and robust improvement in performance.
We propose a simple training procedure: (i) use uniform sampling on standard data augmentation transformations; (ii) increase the strength transformations to account for the higher data variance expected when working out-of-domain, and (iii) devise a new reward function to reject extreme transformations that can harm the training.
- Score: 13.114457707388283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is one of the most effective techniques for regularizing
deep learning models and improving their recognition performance in a variety
of tasks and domains. However, this holds for standard in-domain settings, in
which the training and test data follow the same distribution. For the
out-of-domain case, where the test data follow a different and unknown
distribution, the best recipe for data augmentation is unclear. In this paper,
we show that for out-of-domain and domain generalization settings, data
augmentation can provide a conspicuous and robust improvement in performance.
To do that, we propose a simple training procedure: (i) use uniform sampling on
standard data augmentation transformations; (ii) increase the strength
transformations to account for the higher data variance expected when working
out-of-domain, and (iii) devise a new reward function to reject extreme
transformations that can harm the training. With this procedure, our data
augmentation scheme achieves a level of accuracy that is comparable to or
better than state-of-the-art methods on benchmark domain generalization
datasets. Code: \url{https://github.com/Masseeh/DCAug}
Related papers
- Simulations of Common Unsupervised Domain Adaptation Algorithms for Image Classification [14.98782101639076]
Domain adaptation (DA) is a machine learning technique that aims to address this problem by reducing the differences between domains.
This paper presents simulation-based algorithms of recent DA techniques, mainly related to unsupervised domain adaptation (UDA)
Our study compares these techniques with public data sets and diverse characteristics, highlighting their respective strengths and drawbacks.
arXiv Detail & Related papers (2025-02-15T06:58:57Z) - Is Large-Scale Pretraining the Secret to Good Domain Generalization? [69.80606575323691]
Multi-Source Domain Generalization (DG) is the task of training on multiple source domains and achieving high classification performance on unseen target domains.
Recent methods combine robust features from web-scale pretrained backbones with new features learned from source data, and this has dramatically improved benchmark results.
We show that all evaluated DG methods struggle on DomainBed-OOP, while recent methods excel on DomainBed-IP.
arXiv Detail & Related papers (2024-12-03T21:43:11Z) - First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
We introduce FOMA: a new data-driven domain-independent data augmentation method.
We evaluate FOMA on in-distribution generalization and out-of-distribution benchmarks, and we show that it improves the generalization of several neural architectures.
arXiv Detail & Related papers (2024-06-16T12:35:05Z) - AdvST: Revisiting Data Augmentations for Single Domain Generalization [39.55487584183931]
Single domain generalization aims to train a robust model against unknown target domain shifts using data from a single source domain.
Standard data augmentations with learnable parameters as semantics transformations can manipulate certain semantics of a sample.
We propose Adversarial learning with Semantics Transformations (AdvST) that augments the source domain data with semantics transformations and learns a robust model with the augmented data.
arXiv Detail & Related papers (2023-12-20T02:29:31Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on.
We propose a new approach called D$3$G to learn domain-specific models.
Our results show that D$3$G consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-06T08:11:16Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - Robust wav2vec 2.0: Analyzing Domain Shift in Self-Supervised
Pre-Training [67.71228426496013]
We show that using target domain data during pre-training leads to large performance improvements across a variety of setups.
We find that pre-training on multiple domains improves performance generalization on domains not seen during training.
arXiv Detail & Related papers (2021-04-02T12:53:15Z) - A Batch Normalization Classifier for Domain Adaptation [0.0]
Adapting a model to perform well on unforeseen data outside its training set is a common problem that continues to motivate new approaches.
We demonstrate that application of batch normalization in the output layer, prior to softmax activation, results in improved generalization across visual data domains in a refined ResNet model.
arXiv Detail & Related papers (2021-03-22T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.