Performance Analysis of Various EfficientNet Based U-Net++ Architecture
for Automatic Building Extraction from High Resolution Satellite Images
- URL: http://arxiv.org/abs/2310.06847v1
- Date: Tue, 5 Sep 2023 18:14:14 GMT
- Title: Performance Analysis of Various EfficientNet Based U-Net++ Architecture
for Automatic Building Extraction from High Resolution Satellite Images
- Authors: Tareque Bashar Ovi, Nomaiya Bashree, Protik Mukherjee, Shakil
Mosharrof, and Masuma Anjum Parthima
- Abstract summary: Building extraction heavily relies on semantic segmentation of high-resolution remote sensing imagery.
Various efficientNet backbone based U-Net++ has been proposed in this study.
According on the experimental findings, the suggested model significantly outperforms previous cutting-edge approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building extraction is an essential component of study in the science of
remote sensing, and applications for building extraction heavily rely on
semantic segmentation of high-resolution remote sensing imagery. Semantic
information extraction gap constraints in the present deep learning based
approaches, however can result in inadequate segmentation outcomes. To address
this issue and extract buildings with high accuracy, various efficientNet
backbone based U-Net++ has been proposed in this study. The designed network,
based on U-Net, can improve the sensitivity of the model by deep supervision,
voluminous redesigned skip-connections and hence reducing the influence of
irrelevant feature areas in the background. Various effecientNet backbone based
encoders have been employed when training the network to enhance the capacity
of the model to extract more relevant feature. According on the experimental
findings, the suggested model significantly outperforms previous cutting-edge
approaches. Among the 5 efficientNet variation Unet++ based on efficientb4
achieved the best result by scoring mean accuracy of 92.23%, mean iou of
88.32%, and mean precision of 93.2% on publicly available Massachusetts
building dataset and thus showing the promises of the model for automatic
building extraction from high resolution satellite images.
Related papers
- Depth Estimation using Weighted-loss and Transfer Learning [2.428301619698667]
We propose a simplified and adaptable approach to improve depth estimation accuracy using transfer learning and an optimized loss function.
In this study, we propose a simplified and adaptable approach to improve depth estimation accuracy using transfer learning and an optimized loss function.
The results indicate significant improvements in accuracy and robustness, with EfficientNet being the most successful architecture.
arXiv Detail & Related papers (2024-04-11T12:25:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Building Extraction from Remote Sensing Images via an Uncertainty-Aware
Network [18.365220543556113]
Building extraction plays an essential role in many applications, such as city planning and urban dynamic monitoring.
We propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem.
Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin.
arXiv Detail & Related papers (2023-07-23T12:42:15Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGD requires clipping and noising of per-sample gradients.
This introduces a reduction in model utility compared to non-private training.
We distilled a new model architecture termed SmoothNet, which is characterised by increased robustness to the challenges of DP-SGD training.
arXiv Detail & Related papers (2022-05-09T07:51:54Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks [28.32775611169636]
We introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation.
A novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features.
Our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU)
arXiv Detail & Related papers (2020-08-10T11:00:19Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
We present a network architecture derived from the loss to maximize conditional log-likelihood.
By extending the layer of latent variables to multiple layers, the network is able to learn robust features on scale.
In experiments, the proposed algorithm significantly outperforms state-of-the-art methods in terms of both recall and precision.
arXiv Detail & Related papers (2020-05-26T01:06:47Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.