Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks
- URL: http://arxiv.org/abs/2008.04021v1
- Date: Mon, 10 Aug 2020 11:00:19 GMT
- Title: Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks
- Authors: Pourya Shamsolmoali, Masoumeh Zareapoor, Huiyu Zhou, Ruili Wang, and
Jie Yang
- Abstract summary: We introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation.
A novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features.
Our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU)
- Score: 28.32775611169636
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Road extraction in remote sensing images is of great importance for a wide
range of applications. Because of the complex background, and high density,
most of the existing methods fail to accurately extract a road network that
appears correct and complete. Moreover, they suffer from either insufficient
training data or high costs of manual annotation. To address these problems, we
introduce a new model to apply structured domain adaption for synthetic image
generation and road segmentation. We incorporate a feature pyramid network into
generative adversarial networks to minimize the difference between the source
and target domains. A generator is learned to produce quality synthetic images,
and the discriminator attempts to distinguish them. We also propose a feature
pyramid network that improves the performance of the proposed model by
extracting effective features from all the layers of the network for describing
different scales objects. Indeed, a novel scale-wise architecture is introduced
to learn from the multi-level feature maps and improve the semantics of the
features. For optimization, the model is trained by a joint reconstruction loss
function, which minimizes the difference between the fake images and the real
ones. A wide range of experiments on three datasets prove the superior
performance of the proposed approach in terms of accuracy and efficiency. In
particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts
dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher
accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches
used in the evaluation.
Related papers
- Lightweight single-image super-resolution network based on dual paths [0.552480439325792]
Single image super-resolution(SISR) algorithms under deep learning currently have two main models, one based on convolutional neural networks and the other based on Transformer.
This paper proposes a new lightweight multi-scale feature fusion network model based on two-way complementary convolutional and Transformer.
arXiv Detail & Related papers (2024-09-10T15:31:37Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
Tiny Object Detection is challenging due to small size, low resolution, occlusion, background clutter, lighting conditions and small object-to-image ratio.
We propose a novel two-stage methodology Synthetic Image Augmentation (SRIA) to enhance generalization capabilities of models encountering 2D datasets.
We report that detection accuracy improved from an initial 41% to 92% for OOD test set.
arXiv Detail & Related papers (2023-09-23T05:02:31Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
We propose a new segmentation model that combines convolutional neural networks with deep transformers.
Our results demonstrate that the proposed methodology improves segmentation accuracy compared to state-of-the-art techniques.
arXiv Detail & Related papers (2022-06-20T12:03:54Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
arXiv Detail & Related papers (2021-10-12T07:58:10Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Multi-scale Attention U-Net (MsAUNet): A Modified U-Net Architecture for
Scene Segmentation [1.713291434132985]
We propose a novel multi-scale attention network for scene segmentation by using contextual information from an image.
This network can map local features with their global counterparts with improved accuracy and emphasize on discriminative image regions.
We have evaluated our model on two standard datasets named PascalVOC2012 and ADE20k.
arXiv Detail & Related papers (2020-09-15T08:03:41Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.