論文の概要: Distillation Improves Visual Place Recognition for Low Quality Images
- arxiv url: http://arxiv.org/abs/2310.06906v2
- Date: Sun, 27 Oct 2024 22:09:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:10.526537
- Title: Distillation Improves Visual Place Recognition for Low Quality Images
- Title(参考訳): 蒸留による低画質画像の視覚的位置認識の改善
- Authors: Anbang Yang, Ge Jin, Junjie Huang, Yao Wang, John-Ross Rizzo, Chen Feng,
- Abstract要約: リアルタイムの視覚的ローカライゼーションはしばしばオンラインコンピューティングを利用しており、クエリ画像やビデオは視覚的位置認識(VPR)のためにリモートサーバに送信される。
限られたネットワーク帯域幅は、画像品質の低下と、大域的な画像記述子の劣化を必要とし、VPRの精度を低下させる。
本稿では,高品質な画像から特徴表現を学習し,低品質な画像からより識別性の高い記述子を抽出する知識蒸留手法を用いて,記述子抽出レベルでこの問題に対処する。
- 参考スコア(独自算出の注目度): 13.440872071847627
- License:
- Abstract: Real-time visual localization often utilizes online computing, for which query images or videos are transmitted to remote servers for visual place recognition (VPR). However, limited network bandwidth necessitates image-quality reduction and thus the degradation of global image descriptors, reducing VPR accuracy. We address this issue at the descriptor extraction level with a knowledge-distillation methodology that learns feature representations from high-quality images to extract more discriminative descriptors from low-quality images. Our approach includes the Inter-channel Correlation Knowledge Distillation (ICKD) loss, Mean Squared Error (MSE) loss, and Triplet loss. We validate the proposed losses on multiple VPR methods and datasets subjected to JPEG compression, resolution reduction, and video quantization. We obtain significant improvements in VPR recall rates under all three tested modalities of lowered image quality. Furthermore, we fill a gap in VPR literature on video-based data and its influence on VPR performance. This work contributes to more reliable place recognition in resource-constrained environments.
- Abstract(参考訳): リアルタイムの視覚的ローカライゼーションはしばしばオンラインコンピューティングを使用し、クエリ画像やビデオは視覚的位置認識(VPR)のためにリモートサーバに送信される。
しかし、帯域幅が限られると画質が低下し、大域的な画像記述子の劣化が生じ、VPRの精度が低下する。
本稿では,高品質な画像から特徴表現を学習し,低品質な画像からより識別性の高い記述子を抽出する知識蒸留手法を用いて,記述子抽出レベルでこの問題に対処する。
我々のアプローチには、チャネル間相関知識蒸留(ICKD)損失、平均正方形誤差(MSE)損失、トリプルト損失が含まれる。
我々は、JPEG圧縮、解像度低減、ビデオ量子化の対象となる複数のVPR手法とデータセットについて、提案した損失を検証した。
画像品質が低下する3つの条件で, VPRリコール率の大幅な改善が得られた。
さらに、ビデオベースデータにおけるVPR文学のギャップと、VPRのパフォーマンスへの影響を埋める。
この研究は、資源制約のある環境におけるより信頼性の高い場所認識に寄与する。
関連論文リスト
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - VCISR: Blind Single Image Super-Resolution with Video Compression
Synthetic Data [18.877077302923713]
本稿では,映像圧縮に基づく劣化モデルを用いて,ブラインドSISRタスクにおける低解像度画像データを合成する。
提案手法は既存の画像データセットに適用可能である。
SISR分解モデルにビデオ符号化アーティファクトを導入することで、ニューラルネットワークは、ビデオ圧縮劣化を復元する機能を備えた、画像の超解凍を可能にする。
論文 参考訳(メタデータ) (2023-11-02T05:24:19Z) - Kernel Inversed Pyramidal Resizing Network for Efficient Pavement
Distress Recognition [9.927965682734069]
画像リサイズのために,Kernel Inversed Pyramidal Resizing Network (KIPRN) というライトネットワークを導入した。
KIPRNでは、ピラミッドの畳み込みとカーネルの逆転畳み込みは、識別情報をマイニングするために特別に設計されている。
以上の結果から,KIPRNは一般的にCNNモデルの舗装救難認識を改善することが示唆された。
論文 参考訳(メタデータ) (2022-12-04T10:40:40Z) - Analysis of the Effect of Low-Overhead Lossy Image Compression on the
Performance of Visual Crowd Counting for Smart City Applications [78.55896581882595]
画像圧縮技術は画像の品質を低下させ、精度を低下させる。
本稿では,低オーバヘッド損失画像圧縮法の適用が視覚的群集カウントの精度に与える影響を解析する。
論文 参考訳(メタデータ) (2022-07-20T19:20:03Z) - Identity Preserving Loss for Learned Image Compression [0.0]
本研究は,高圧縮率を実現するために,ドメイン固有の特徴を学習するエンドツーエンド画像圧縮フレームワークを提案する。
本稿では,CRF-23 HEVC圧縮の38%と42%のビット・パー・ピクセル(BPP)値が得られる新しいID保存再構成(IPR)ロス関数を提案する。
CRF-23 HEVC圧縮の38%の低いBPP値を保ちながら、未確認の認識モデルを用いてLFWデータセットの at-par 認識性能を示す。
論文 参考訳(メタデータ) (2022-04-22T18:01:01Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Recognition-Aware Learned Image Compression [0.5801044612920815]
本稿では,タスク固有の損失と並行して,速度歪み損失を最適化する認識認識型学習圧縮手法を提案する。
提案手法は,BPGなどの従来の手法と比較して,同等値での認識精度が26%向上する。
論文 参考訳(メタデータ) (2022-02-01T03:33:51Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - Attention Based Real Image Restoration [48.933507352496726]
深層畳み込みニューラルネットワークは、合成劣化を含む画像に対してより良い性能を発揮する。
本稿では,新しい1段ブラインド実画像復元ネットワーク(R$2$Net)を提案する。
論文 参考訳(メタデータ) (2020-04-26T04:21:49Z) - Discernible Image Compression [124.08063151879173]
本稿では、外観と知覚の整合性の両方を追求し、圧縮画像を作成することを目的とする。
エンコーダ・デコーダ・フレームワークに基づいて,事前学習したCNNを用いて,オリジナル画像と圧縮画像の特徴を抽出する。
ベンチマーク実験により,提案手法を用いて圧縮した画像は,その後の視覚認識・検出モデルでもよく認識できることが示された。
論文 参考訳(メタデータ) (2020-02-17T07:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。