論文の概要: Self-supervised Object-Centric Learning for Videos
- arxiv url: http://arxiv.org/abs/2310.06907v1
- Date: Tue, 10 Oct 2023 18:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 01:37:14.324761
- Title: Self-supervised Object-Centric Learning for Videos
- Title(参考訳): ビデオのための自己教師付きオブジェクト中心学習
- Authors: G\"orkay Aydemir, Weidi Xie, Fatma G\"uney
- Abstract要約: 実世界のシーケンスで複数のオブジェクトをセグメント化するための、最初の完全に教師なしの手法を提案する。
オブジェクト中心学習フレームワークは,各フレーム上のスロットにオブジェクトを空間的に結合し,これらのスロットをフレーム間で関連付ける。
提案手法は,YouTubeビデオにおける複雑・高多様性クラスの複数インスタンスの分割に成功している。
- 参考スコア(独自算出の注目度): 39.02148880719576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised multi-object segmentation has shown impressive results on images
by utilizing powerful semantics learned from self-supervised pretraining. An
additional modality such as depth or motion is often used to facilitate the
segmentation in video sequences. However, the performance improvements observed
in synthetic sequences, which rely on the robustness of an additional cue, do
not translate to more challenging real-world scenarios. In this paper, we
propose the first fully unsupervised method for segmenting multiple objects in
real-world sequences. Our object-centric learning framework spatially binds
objects to slots on each frame and then relates these slots across frames. From
these temporally-aware slots, the training objective is to reconstruct the
middle frame in a high-level semantic feature space. We propose a masking
strategy by dropping a significant portion of tokens in the feature space for
efficiency and regularization. Additionally, we address over-clustering by
merging slots based on similarity. Our method can successfully segment multiple
instances of complex and high-variety classes in YouTube videos.
- Abstract(参考訳): 教師なしマルチオブジェクトセグメンテーションは、自己教師付き事前学習から学んだ強力なセマンティクスを活用することで、画像に印象的な結果を示している。
深度や動きなどの追加のモダリティは、ビデオシーケンスのセグメンテーションを容易にするためにしばしば用いられる。
しかし、追加の手がかりの強固さに依存する合成シーケンスで観察されるパフォーマンス改善は、より困難な現実世界のシナリオには変換されない。
本稿では,実世界列で複数のオブジェクトをセグメンテーションする最初の完全教師なし手法を提案する。
オブジェクト中心学習フレームワークは,各フレーム上のスロットにオブジェクトを空間的に結合し,これらのスロットをフレーム間で関連付ける。
これらの時間的認識スロットから、トレーニングの目的は、中間フレームを高レベルな意味的特徴空間で再構築することである。
我々は,効率と正則化のために,特徴空間のトークンのかなりの部分を落としてマスキング戦略を提案する。
さらに、類似性に基づいてスロットをマージすることで、オーバークラスタリングに対処する。
提案手法は,YouTubeビデオにおける複雑・高多様性クラスの複数インスタンスの分割に成功している。
関連論文リスト
- Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
ビデオセグメント化は、ビデオシーケンスを、オブジェクトやフレーム内の関心領域に基づいて意味のあるセグメントに分割することを目的としている。
現在のビデオセグメンテーションモデルは、しばしば画像セグメンテーション技術から派生している。
本研究では,空間的・時間的特徴集約を向上する学習戦略であるMasked Video Consistencyを提案する。
論文 参考訳(メタデータ) (2024-08-20T08:08:32Z) - Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation [76.68301884987348]
自己教師型ビデオオブジェクトセグメンテーション(VOS)のための簡易かつ効果的なアプローチを提案する。
我々の重要な洞察は、DINO-pretrained Transformerに存在する構造的依存関係を利用して、ビデオ内の堅牢な時間分割対応を確立することである。
提案手法は,複数の教師なしVOSベンチマークにまたがる最先端性能を実証し,複雑な実世界のマルチオブジェクトビデオセグメンテーションタスクに優れることを示す。
論文 参考訳(メタデータ) (2023-11-29T18:47:17Z) - TAEC: Unsupervised Action Segmentation with Temporal-Aware Embedding and
Clustering [27.52568444236988]
本稿では,教師なしの動画シーケンスからアクションクラスを学習するための教師なしアプローチを提案する。
特に,相対時間予測,特徴再構成,シーケンス・ツー・シーケンス学習を組み合わせた時間的埋め込みネットワークを提案する。
識別されたクラスタに基づいて、ビデオは意味論的に意味のあるアクションクラスに対応するコヒーレントな時間セグメントにデコードする。
論文 参考訳(メタデータ) (2023-03-09T10:46:23Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
CLIPでは、ビデオ内の連続するフレームの冗長性のために、離散的な視覚トークンシーケンスを生成する重要な視覚トークン化プロセスが、多くの均一なトークンを生成する。
これにより、計算コストが大幅に増加し、Webアプリケーションにおけるビデオ検索モデルの展開が妨げられる。
本稿では,最も代表的なトークンを抽出し,非意味トークンをドロップするマルチセグメントトークンクラスタリングアルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-05-02T12:02:09Z) - Temporally-Weighted Hierarchical Clustering for Unsupervised Action
Segmentation [96.67525775629444]
アクションセグメンテーションとは、ビデオにおける意味的に一貫した視覚概念の境界を推測することを指す。
ビデオ中のセグメンテーション動作に対して,トレーニングを必要としない完全自動かつ教師なしのアプローチを提案する。
提案手法は,ビデオの意味的に一貫性のあるフレームをグループ化できる効果的な時間重み付き階層クラスタリングアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-20T23:30:01Z) - Generating Masks from Boxes by Mining Spatio-Temporal Consistencies in
Videos [159.02703673838639]
フレーム毎のバウンディングボックスアノテーションからセグメンテーションマスクを生成する手法を動画で紹介します。
得られた正確なマスクを用いて、ビデオオブジェクトセグメンテーション(VOS)ネットワークの弱い教師付きトレーニングを行う。
追加データは、VOSとより困難なトラッキングドメインの両方で最先端の結果をもたらす大幅に優れた一般化パフォーマンスを提供します。
論文 参考訳(メタデータ) (2021-01-06T18:56:24Z) - CompFeat: Comprehensive Feature Aggregation for Video Instance
Segmentation [67.17625278621134]
ビデオインスタンスのセグメンテーションは、特定のビデオのそれぞれのオブジェクトを検出し、セグメンテーションし、追跡する必要がある複雑なタスクです。
従来のアプローチは、オブジェクトの検出、セグメンテーション、追跡にのみシングルフレーム機能を使用します。
本稿では,時間的および空間的コンテキスト情報を用いて,フレームレベルとオブジェクトレベルでの機能を洗練する新しい包括的特徴集約アプローチ(compfeat)を提案する。
論文 参考訳(メタデータ) (2020-12-07T00:31:42Z) - Revisiting Sequence-to-Sequence Video Object Segmentation with
Multi-Task Loss and Skip-Memory [4.343892430915579]
ビデオオブジェクト(VOS)は、視覚領域の活発な研究領域である。
現行のアプローチでは、特にオブジェクトが小さく、あるいは一時的に隠された場合、長いシーケンスでオブジェクトを失う。
我々は,エンコーダ・デコーダアーキテクチャとメモリモジュールを組み合わせたシーケンス・ツー・シーケンス・アプローチを構築し,シーケンシャルデータを活用する。
論文 参考訳(メタデータ) (2020-04-25T15:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。