論文の概要: Facial Forgery-based Deepfake Detection using Fine-Grained Features
- arxiv url: http://arxiv.org/abs/2310.07028v1
- Date: Tue, 10 Oct 2023 21:30:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 01:19:22.536312
- Title: Facial Forgery-based Deepfake Detection using Fine-Grained Features
- Title(参考訳): きめ細かい特徴を用いた顔の偽造に基づくディープフェイク検出
- Authors: Aakash Varma Nadimpalli, Ajita Rattani
- Abstract要約: ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は,詳細な分類問題としてディープフェイク検出を定式化し,それに対する新たなきめ細かな解を提案する。
本手法は, 背景雑音を効果的に抑制し, 様々なスケールの識別特徴を学習することにより, 微妙で一般化可能な特徴を学習し, 深度検出を行う。
- 参考スコア(独自算出の注目度): 7.378937711027777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Facial forgery by deepfakes has caused major security risks and raised severe
societal concerns. As a countermeasure, a number of deepfake detection methods
have been proposed. Most of them model deepfake detection as a binary
classification problem using a backbone convolutional neural network (CNN)
architecture pretrained for the task. These CNN-based methods have demonstrated
very high efficacy in deepfake detection with the Area under the Curve (AUC) as
high as $0.99$. However, the performance of these methods degrades
significantly when evaluated across datasets and deepfake manipulation
techniques. This draws our attention towards learning more subtle, local, and
discriminative features for deepfake detection. In this paper, we formulate
deepfake detection as a fine-grained classification problem and propose a new
fine-grained solution to it. Specifically, our method is based on learning
subtle and generalizable features by effectively suppressing background noise
and learning discriminative features at various scales for deepfake detection.
Through extensive experimental validation, we demonstrate the superiority of
our method over the published research in cross-dataset and cross-manipulation
generalization of deepfake detectors for the majority of the experimental
scenarios.
- Abstract(参考訳): ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、社会的な深刻な懸念を引き起こした。
対策として,多くのディープフェイク検出手法が提案されている。
その多くは、タスクのために事前トレーニングされたbackbone convolutional neural network(cnn)アーキテクチャを使用して、ディープフェイク検出をバイナリ分類問題としてモデル化する。
これらのCNN法は、AUC(Area under the Curve)による深度検出において、0.99ドルという高い効果を示した。
しかし,これらの手法の性能は,データセットやディープフェイク操作技術で評価すると著しく低下する。
これにより、ディープフェイク検出のためのより微妙で局所的で識別的な特徴を学ぶことに注意が向けられます。
本稿では,ディープフェイク検出をきめ細かい分類問題として定式化し,それに対する新しいきめ細かな解を提案する。
具体的には,背景雑音を効果的に抑制し,様々な規模で識別的特徴を学習することにより,微妙で一般化可能な特徴を学習する。
本研究では, 実験シナリオの大部分に対して, クロスデータセットおよびクロスマニピュレーションによるディープフェイク検出器の一般化について, 提案手法の優位性を示す。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Aggregating Layers for Deepfake Detection [20.191456827448736]
ネットワークが1つのDeepfakeアルゴリズムでトレーニングされ、別のアルゴリズムで生成されたDeepfakesでテストされる場合を考える。
我々のアルゴリズムは、あるバックボーンネットワークのすべての層から抽出された特徴を集約し、偽物を検出する。
本稿では,2つの関心領域(ディープフェイク検出と合成画像検出)に対するアプローチを評価し,SOTAの結果が得られたことを確かめる。
論文 参考訳(メタデータ) (2022-10-11T14:29:47Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - On Improving Cross-dataset Generalization of Deepfake Detectors [1.0152838128195467]
ディープフェイクによる顔の操作は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は、教師付きおよび強化学習(RL)のハイブリッド組み合わせとして深層偽検出を定式化し、そのクロスデータセット一般化性能を改善する。
提案手法は,ディープフェイク検出器のクロスデータセット一般化における既存の研究よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-08T20:34:53Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
ディープラーニングは、ディープフェイク(deepfakes)として知られる非常に現実的なフェイクコンテンツを生み出した。
現在のディープフェイク検出法のほとんどは、2クラス畳み込みニューラルネットワーク(CNN)を用いた偽のイメージやビデオとを区別する二項分類問題と見なされている。
本稿では,異なる損失関数とディープフェイク生成技術を用いて,ディープフェイク識別におけるディープフェイク認識の有効性を徹底的に評価する。
論文 参考訳(メタデータ) (2021-10-04T18:02:56Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
ディープフェイクは重要な社会問題となり、それらを検出することが非常に重要です。
本研究では,異なる種類のディープフェイクを同時に検出する実用的なデジタル鑑識ツールを提案する。
レジデンシャルブロックを用いた自動エンコーダベースの検出モデルを開発し、異なる種類のディープフェイクを同時に検出する転送学習を順次実施します。
論文 参考訳(メタデータ) (2021-05-13T07:31:08Z) - Representative Forgery Mining for Fake Face Detection [52.896286647898386]
ディテクタの精緻化と注目の拡大を導くための注意ベースのデータ拡張フレームワークを提案します。
提案手法は,トップnのセンシティブな顔領域を追跡し,検出者に対して,以前無視された領域にさらに深く掘り下げて,より代表的な偽造を行うように促す。
論文 参考訳(メタデータ) (2021-04-14T03:24:19Z) - Multi-attentional Deepfake Detection [79.80308897734491]
ディープフェイクによる顔の偽造はインターネットに広まり、深刻な社会的懸念を引き起こしている。
新たなマルチアテンテーショナルディープフェイク検出ネットワークを提案する。
具体的には,1)ネットワークを異なる局所的部分へ配置するための複数の空間的注意ヘッド,2)浅い特徴の微妙なアーティファクトをズームするテクスチャ的特徴拡張ブロック,3)低レベルなテクスチャ特徴と高レベルなセマンティクス特徴をアグリゲートする,の3つの構成要素からなる。
論文 参考訳(メタデータ) (2021-03-03T13:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。