Taking the human out of decomposition-based optimization via artificial
intelligence: Part I. Learning when to decompose
- URL: http://arxiv.org/abs/2310.07068v1
- Date: Tue, 10 Oct 2023 23:31:06 GMT
- Title: Taking the human out of decomposition-based optimization via artificial
intelligence: Part I. Learning when to decompose
- Authors: Ilias Mitrai, Prodromos Daoutidis
- Abstract summary: We propose a graph classification approach for automatically determining whether to use a monolithic or a decomposition-based solution method.
It is shown how the learned classifier can be incorporated into existing structural mixed integer optimization solvers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a graph classification approach for automatically
determining whether to use a monolithic or a decomposition-based solution
method. In this approach, an optimization problem is represented as a graph
that captures the structural and functional coupling among the variables and
constraints of the problem via an appropriate set of features. Given this
representation, a graph classifier is built to determine the best solution
method for a given problem. The proposed approach is used to develop a
classifier that determines whether a convex Mixed Integer Nonlinear Programming
problem should be solved using branch and bound or the outer approximation
algorithm. Finally, it is shown how the learned classifier can be incorporated
into existing mixed integer optimization solvers.
Related papers
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
Iterative refinement is a useful paradigm for representation learning.
We develop an implicit differentiation approach that improves the stability and tractability of training.
arXiv Detail & Related papers (2022-07-02T10:00:35Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Symbolic Regression using Mixed-Integer Nonlinear Optimization [9.638685454900047]
The Symbolic Regression (SR) problem is a hard problem in machine learning.
We propose a hybrid algorithm that combines mixed-integer nonlinear optimization with explicit enumeration.
We show that our algorithm is competitive, for some synthetic data sets, with a state-of-the-art SR software and a recent physics-inspired method called AI Feynman.
arXiv Detail & Related papers (2020-06-11T20:53:17Z) - Methods of Adaptive Signal Processing on Graphs Using Vertex-Time
Autoregressive Models [0.0]
The concept of a random process has been recently extended to graph signals.
The online version of this problem was proposed via the adaptive framework.
Experiments are conducted to shed light on the potential, the potential, and the possible research attempt of this work.
arXiv Detail & Related papers (2020-03-10T12:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.