論文の概要: My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection
- arxiv url: http://arxiv.org/abs/2310.07159v1
- Date: Wed, 11 Oct 2023 03:09:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:42:56.303279
- Title: My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection
- Title(参考訳): My Brotherが教えてくれる: ノード注入によるソーシャルボット検出の逆攻撃
- Authors: Lanjun Wang, Xinran Qiao, Yanwei Xie, Weizhi Nie, Yongdong Zhang, Anan Liu,
- Abstract要約: Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 69.99192868521564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social platforms such as Twitter are under siege from a multitude of fraudulent users. In response, social bot detection tasks have been developed to identify such fake users. Due to the structure of social networks, the majority of methods are based on the graph neural network(GNN), which is susceptible to attacks. In this study, we propose a node injection-based adversarial attack method designed to deceive bot detection models. Notably, neither the target bot nor the newly injected bot can be detected when a new bot is added around the target bot. This attack operates in a black-box fashion, implying that any information related to the victim model remains unknown. To our knowledge, this is the first study exploring the resilience of bot detection through graph node injection. Furthermore, we develop an attribute recovery module to revert the injected node embedding from the graph embedding space back to the original feature space, enabling the adversary to manipulate node perturbation effectively. We conduct adversarial attacks on four commonly used GNN structures for bot detection on two widely used datasets: Cresci-2015 and TwiBot-22. The attack success rate is over 73\% and the rate of newly injected nodes being detected as bots is below 13\% on these two datasets.
- Abstract(参考訳): Twitterなどのソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
これに対し、このような偽ユーザーを特定するソーシャルボット検出タスクが開発された。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本研究では,ボット検出モデルを欺いたノード注入による逆攻撃手法を提案する。
特に、ターゲットボットの周囲に新たなボットが加えられた場合には、ターゲットボットも新規に注入されたボットも検出できない。
この攻撃はブラックボックス方式で行われており、被害者のモデルに関する情報はまだ不明であることを示している。
我々の知る限り、グラフノード注入によるボット検出のレジリエンスを探求する最初の研究である。
さらに,グラフ埋め込み空間から挿入されたノードを元の特徴空間に戻し,ノードの摂動を効果的に操作できる属性回復モジュールを開発した。
我々は、広く使われている2つのデータセット(Cresci-2015 と TwiBot-22)上で、ボット検出によく使われる4つのGNN構造に対して敵対攻撃を行う。
攻撃成功率は73\%を超え、新たに注入されたノードがボットとして検出される割合は、これらの2つのデータセットで13\%以下である。
関連論文リスト
- BSG4Bot: Efficient Bot Detection based on Biased Heterogeneous Subgraphs [6.99955702963268]
悪意のあるソーシャルボットの検出は、偽情報を拡散するために簡単にボットを展開・操作できるため、重要なタスクとなっている。
既存のアプローチのほとんどは、グラフニューラルネットワーク(GNN)を使用して、ユーザ確率と構造的特徴の両方をキャプチャする。
本稿では,BSG4Botと名づけられたBSG4Botを提案する。
論文 参考訳(メタデータ) (2024-10-07T15:52:51Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Over-Sampling Strategy in Feature Space for Graphs based
Class-imbalanced Bot Detection [10.882979272768502]
オンラインソーシャルネットワーク(OSN)の多くのボットは、望ましくない社会的影響をもたらす。
本稿では,少数クラスのサンプルをエッジ合成なしで生成するGNNのオーバーサンプリング戦略を提案する。
このフレームワークは3つの実世界のボット検出ベンチマークデータセットを用いて評価される。
論文 参考訳(メタデータ) (2023-02-14T08:35:33Z) - TwiBot-22: Towards Graph-Based Twitter Bot Detection [39.359825215347655]
TwiBot-22はグラフベースのTwitterボット検出ベンチマークで、これまでで最大のデータセットを示している。
35の代表的なTwitterボット検出ベースラインを再実装し、TwiBot-22を含む9つのデータセットで評価します。
さらなる研究を容易にするため、実装済みのコードとデータセットをTwiBot-22評価フレームワークに統合する。
論文 参考訳(メタデータ) (2022-06-09T15:23:37Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z) - Botnet Detection Using Recurrent Variational Autoencoder [4.486436314247216]
ボットネットは悪質なアクターによってますます利用され、多くのインターネットユーザーに脅威を与えている。
本稿では,ボットネット検出のための新しい機械学習手法であるRecurrent Variational Autoencoder (RVAE)を提案する。
RVAEは文献で発表された最もよく知られた結果と同じ精度でボットネットを検出できることを示した。
論文 参考訳(メタデータ) (2020-04-01T05:03:34Z) - Twitter Bot Detection Using Bidirectional Long Short-term Memory Neural
Networks and Word Embeddings [6.09170287691728]
本稿では,Twitterボットを人間アカウントと区別するために,単語埋め込みを用いたリカレントニューラルネットワークを開発した。
実験により,既存の最先端ボット検出システムと比較して,本手法が競争力を発揮することが示された。
論文 参考訳(メタデータ) (2020-02-03T17:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。