Bidirectional recurrent imputation and abundance estimation of LULC
classes with MODIS multispectral time series and geo-topographic and climatic
data
- URL: http://arxiv.org/abs/2310.07223v3
- Date: Wed, 24 Jan 2024 08:11:02 GMT
- Title: Bidirectional recurrent imputation and abundance estimation of LULC
classes with MODIS multispectral time series and geo-topographic and climatic
data
- Authors: Jos\'e Rodr\'iguez-Ortega (1 and 2), Rohaifa Khaldi (2), Domingo
Alcaraz-Segura (3), Siham Tabik (1) ((1) Department of Computer Science and
Artificial Intelligence, DaSCI, University of Granada, Granada, Spain, (2)
LifeWatch-ERIC ICT Core, Seville, Spain, (3) Department of Botany, Faculty of
Science, University of Granada, Granada, Spain)
- Abstract summary: Spectral unmixing (SU) is a technique that disentangles mixed pixels into constituent Land Use and Land Cover (LULC) types.
Our work pioneers SU using MODIS MS time series, addressing missing data with end-to-end DL models.
Experimental results demonstrate that integrating spectral-temporal input data with geo-topographic and climatic information significantly improves the estimation of LULC abundances in mixed pixels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC)
types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels
into constituent LULC types and their abundance fractions. While existing
studies on Deep Learning (DL) for SU typically focus on single time-step
hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS
MS time series, addressing missing data with end-to-end DL models. Our approach
enhances a Long-Short Term Memory (LSTM)-based model by incorporating
geographic, topographic (geo-topographic), and climatic ancillary information.
Notably, our method eliminates the need for explicit endmember extraction,
instead learning the input-output relationship between mixed spectra and LULC
abundances through supervised learning. Experimental results demonstrate that
integrating spectral-temporal input data with geo-topographic and climatic
information significantly improves the estimation of LULC abundances in mixed
pixels. To facilitate this study, we curated a novel labeled dataset for
Andalusia (Spain) with monthly MODIS multispectral time series at 460m
resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing
(Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC
abundances along with ancillary information. The dataset
(https://zenodo.org/records/7752348) and code
(https://github.com/jrodriguezortega/MSMTU) are available to the public.
Related papers
- SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
We introduce SpectralEarth, a large-scale multi-temporal dataset designed to pretrain hyperspectral foundation models.
We pretrain a series of foundation models on SpectralEarth using state-of-the-art self-supervised learning (SSL) algorithms.
We construct four downstream datasets for land-cover and crop-type mapping, providing benchmarks for model evaluation.
arXiv Detail & Related papers (2024-08-15T22:55:59Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data [1.4053129774629076]
M3LEO is a multi-modal, multi-label Earth observation dataset.
It spans approximately 17M 4x4 km data chips from six diverse geographic regions.
arXiv Detail & Related papers (2024-06-06T16:30:41Z) - Spectral Image Data Fusion for Multisource Data Augmentation [44.99833362998488]
Multispectral and hyperspectral images are increasingly popular in different research fields, such as remote sensing, astronomical imaging, or precision agriculture.
The amount of free data available to perform machine learning tasks is relatively small.
Artificial intelligence models developed in the area of spectral imaging require input images with a fixed spectral signature.
arXiv Detail & Related papers (2024-04-05T13:40:18Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From
Multi-Source Optical Imagery [4.9687851703152806]
We introduce the French Land cover from Aerospace ImageRy (FLAIR), an extensive dataset from the French National Institute of Geographical and Forest Information (IGN)
FLAIR contains high-resolution aerial imagery with a ground sample distance of 20 cm and over 20 billion individually labeled pixels for precise land-cover classification.
The dataset also integrates temporal and spectral data from optical satellite time series.
arXiv Detail & Related papers (2023-10-20T07:55:12Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
Open data is frequently released spatially aggregated, usually to comply with privacy policies. But coarse, heterogeneous aggregations complicate coherent learning and integration for downstream AI/ML systems.
We propose an overarching model named Structurally-Aware Recurrent Network (SARN), which integrates structurally-aware spatial attention layers into the Gated Recurrent Unit (GRU) model.
For scenarios with limited historical training data, we show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples.
arXiv Detail & Related papers (2023-06-09T21:01:29Z) - PS-ARM: An End-to-End Attention-aware Relation Mixer Network for Person
Search [56.02761592710612]
We propose a novel attention-aware relation mixer (ARM) for module person search.
Our ARM module is native and does not rely on fine-grained supervision or topological assumptions.
Our PS-ARM achieves state-of-the-art performance on both datasets.
arXiv Detail & Related papers (2022-10-07T10:04:12Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features.
We propose several approaches to HSI segmentation based on M-GSP feature extraction.
Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.
arXiv Detail & Related papers (2021-11-29T23:28:18Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.