SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation
- URL: http://arxiv.org/abs/2306.07292v4
- Date: Thu, 1 Aug 2024 21:51:58 GMT
- Title: SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation
- Authors: Bin Han, Bill Howe,
- Abstract summary: Open data is frequently released spatially aggregated, usually to comply with privacy policies. But coarse, heterogeneous aggregations complicate coherent learning and integration for downstream AI/ML systems.
We propose an overarching model named Structurally-Aware Recurrent Network (SARN), which integrates structurally-aware spatial attention layers into the Gated Recurrent Unit (GRU) model.
For scenarios with limited historical training data, we show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples.
- Score: 8.636014676778682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open data is frequently released spatially aggregated, usually to comply with privacy policies. But coarse, heterogeneous aggregations complicate learning and integration for downstream AI/ML systems. In this work, we consider models to disaggregate spatio-temporal data from a low-resolution, irregular partition (e.g., census tract) to a high-resolution, irregular partition (e.g., city block). We propose an overarching model named the Structurally-Aware Recurrent Network (SARN), which integrates structurally-aware spatial attention (SASA) layers into the Gated Recurrent Unit (GRU) model. The spatial attention layers capture spatial interactions among regions, while the gated recurrent module captures the temporal dependencies. Each SASA layer calculates both global and structural attention -- global attention facilitates comprehensive interactions between different geographic levels, while structural attention leverages the containment relationship between different geographic levels (e.g., a city block being wholly contained within a census tract) to ensure coherent and consistent results. For scenarios with limited historical training data, we explore transfer learning and show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples. Evaluating these techniques on two mobility datasets, we find that on both datasets, SARN significantly outperforms other neural models (5% and 1%) and typical heuristic methods (40% and 14%), enabling us to generate realistic, high-quality fine-grained data for downstream applications.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network [39.65520262751766]
We develop a new traffic prediction framework-Spatial-Temporal Graph Diffusion Network (ST-GDN)
In particular, ST-GDN is a hierarchically structured graph neural architecture which learns not only the local region-wise geographical dependencies, but also the spatial semantics from a global perspective.
Experiments on several real-life traffic datasets demonstrate that ST-GDN outperforms different types of state-of-the-art baselines.
arXiv Detail & Related papers (2021-10-08T11:19:06Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Interpretable Crowd Flow Prediction with Spatial-Temporal Self-Attention [16.49833154469825]
The most challenging part of predicting crowd flow is to measure the complicated spatial-temporal dependencies.
We propose a Spatial-Temporal Self-Attention Network (STSAN) with an ST encoding gate that calculates the entire spatial-temporal representation.
Experimental results on traffic and mobile data demonstrate that the proposed method reduces inflow and outflow RMSE by 16% and 8% on the Taxi-NYC dataset.
arXiv Detail & Related papers (2020-02-22T12:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.