A Comparative Study of Pre-trained CNNs and GRU-Based Attention for
Image Caption Generation
- URL: http://arxiv.org/abs/2310.07252v1
- Date: Wed, 11 Oct 2023 07:30:01 GMT
- Title: A Comparative Study of Pre-trained CNNs and GRU-Based Attention for
Image Caption Generation
- Authors: Rashid Khan, Bingding Huang, Haseeb Hassan, Asim Zaman, Zhongfu Ye
- Abstract summary: This paper proposes a deep neural framework for image caption generation using a GRU-based attention mechanism.
Our approach employs multiple pre-trained convolutional neural networks as the encoder to extract features from the image and a GRU-based language model as the decoder to generate sentences.
- Score: 9.490898534790977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image captioning is a challenging task involving generating a textual
description for an image using computer vision and natural language processing
techniques. This paper proposes a deep neural framework for image caption
generation using a GRU-based attention mechanism. Our approach employs multiple
pre-trained convolutional neural networks as the encoder to extract features
from the image and a GRU-based language model as the decoder to generate
descriptive sentences. To improve performance, we integrate the Bahdanau
attention model with the GRU decoder to enable learning to focus on specific
image parts. We evaluate our approach using the MSCOCO and Flickr30k datasets
and show that it achieves competitive scores compared to state-of-the-art
methods. Our proposed framework can bridge the gap between computer vision and
natural language and can be extended to specific domains.
Related papers
- Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
We develop an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process.
Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens.
Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality.
arXiv Detail & Related papers (2022-07-26T19:35:49Z) - Image Captioning based on Feature Refinement and Reflective Decoding [0.0]
This paper introduces an encoder-decoder-based image captioning system.
It extracts spatial and global features for each region in the image using the Faster R-CNN with ResNet-101 as a backbone.
The decoder consists of an attention-based recurrent module and a reflective attention module to enhance the decoder's ability to model long-term sequential dependencies.
arXiv Detail & Related papers (2022-06-16T07:56:28Z) - MaskOCR: Text Recognition with Masked Encoder-Decoder Pretraining [68.05105411320842]
We propose a novel approach MaskOCR to unify vision and language pre-training in the classical encoder-decoder recognition framework.
We adopt the masked image modeling approach to pre-train the feature encoder using a large set of unlabeled real text images.
We transform text data into synthesized text images to unify the data modalities of vision and language, and enhance the language modeling capability of the sequence decoder.
arXiv Detail & Related papers (2022-06-01T08:27:19Z) - A Deep Neural Framework for Image Caption Generation Using GRU-Based
Attention Mechanism [5.855671062331371]
This study aims to develop a system that uses a pre-trained convolutional neural network (CNN) to extract features from an image, integrates the features with an attention mechanism, and creates captions using a recurrent neural network (RNN)
On the MSCOCO dataset, the experimental results achieve competitive performance against state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-03T09:47:59Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Exploring Explicit and Implicit Visual Relationships for Image
Captioning [11.82805641934772]
In this paper, we explore explicit and implicit visual relationships to enrich region-level representations for image captioning.
Explicitly, we build semantic graph over object pairs and exploit gated graph convolutional networks (Gated GCN) to selectively aggregate local neighbors' information.
Implicitly, we draw global interactions among the detected objects through region-based bidirectional encoder representations from transformers.
arXiv Detail & Related papers (2021-05-06T01:47:51Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.