Deep ReLU networks and high-order finite element methods II: Chebyshev emulation
- URL: http://arxiv.org/abs/2310.07261v2
- Date: Tue, 4 Jun 2024 08:19:46 GMT
- Title: Deep ReLU networks and high-order finite element methods II: Chebyshev emulation
- Authors: Joost A. A. Opschoor, Christoph Schwab,
- Abstract summary: We show expression rates and stability in Sobolev norms of deep feedforward ReLU neural networks (NNs)
Novel constructions of ReLU NN surrogates encoding function approximations in terms of Chebyshev expansion coefficients are developed.
Bounds on expression rates and stability are obtained that are superior to those of constructions based on ReLU NN emulations of monomials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show expression rates and stability in Sobolev norms of deep feedforward ReLU neural networks (NNs) in terms of the number of parameters defining the NN for continuous, piecewise polynomial functions, on arbitrary, finite partitions $\mathcal{T}$ of a bounded interval $(a,b)$. Novel constructions of ReLU NN surrogates encoding function approximations in terms of Chebyshev polynomial expansion coefficients are developed which require fewer neurons than previous constructions. Chebyshev coefficients can be computed easily from the values of the function in the Clenshaw--Curtis points using the inverse fast Fourier transform. Bounds on expression rates and stability are obtained that are superior to those of constructions based on ReLU NN emulations of monomials as considered in [Opschoor, Petersen and Schwab, 2020] and [Montanelli, Yang and Du, 2021]. All emulation bounds are explicit in terms of the (arbitrary) partition of the interval, the target emulation accuracy and the polynomial degree in each element of the partition. ReLU NN emulation error estimates are provided for various classes of functions and norms, commonly encountered in numerical analysis. In particular, we show exponential ReLU emulation rate bounds for analytic functions with point singularities and develop an interface between Chebfun approximations and constructive ReLU NN emulations.
Related papers
- Smooth Integer Encoding via Integral Balance [0.0]
We introduce a novel method for encoding using smooth real-valued functions.<n>Our approach encodes the number N in the set of natural numbers through the cumulative balance of a smooth function f_N(t)<n>The total integral I(N) converges to zero as N tends to infinity, and the integer can be recovered as the minimal point of near-cancellation.
arXiv Detail & Related papers (2025-04-28T20:23:53Z) - Generalization Bounds and Model Complexity for Kolmogorov-Arnold Networks [1.5850926890180461]
Kolmogorov-Arnold Network (KAN) is a network structure recently proposed by Liu et al.
Work provides a rigorous theoretical analysis of KAN by establishing generalization bounds for KAN equipped with activation functions.
arXiv Detail & Related papers (2024-10-10T15:23:21Z) - Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces [0.0]
We consider the approximation of a large class of bounded functions, with minimal regularity assumptions, by ReLU neural networks.
We show that the approximation error can be bounded from above by a quantity proportional to the uniform norm of the target function.
arXiv Detail & Related papers (2024-05-10T14:31:58Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - On the existence of global minima and convergence analyses for gradient
descent methods in the training of deep neural networks [3.198144010381572]
We study feedforward deep ReLU ANNs with an arbitrarily large number of hidden layers.
We prove convergence of the risk of the GD optimization method with randoms in the training of such ANNs.
We also study solutions of gradient flow differential equations.
arXiv Detail & Related papers (2021-12-17T18:55:40Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
Interpolation [17.199023009789308]
The Expected assumption of SGD (SGD) is being used routinely for non-artisan functions.
In this paper, we show a paradigms for convergence to a smooth non-linear setting.
We also provide theoretical guarantees for different step-size conditions.
arXiv Detail & Related papers (2020-06-18T07:05:56Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
Optimization Formulations for Two-layer Networks [70.15611146583068]
We develop exact representations of training two-layer neural networks with rectified linear units (ReLUs)
Our theory utilizes semi-infinite duality and minimum norm regularization.
arXiv Detail & Related papers (2020-02-24T21:32:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.