Beyond Memorization: Violating Privacy Via Inference with Large Language Models
- URL: http://arxiv.org/abs/2310.07298v2
- Date: Mon, 6 May 2024 15:52:03 GMT
- Title: Beyond Memorization: Violating Privacy Via Inference with Large Language Models
- Authors: Robin Staab, Mark Vero, Mislav Balunović, Martin Vechev,
- Abstract summary: We present the first comprehensive study on the capabilities of pretrained language models to infer personal attributes from text.
Our findings highlight that current LLMs can infer personal data at a previously unattainable scale.
- Score: 2.9373912230684565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current privacy research on large language models (LLMs) primarily focuses on the issue of extracting memorized training data. At the same time, models' inference capabilities have increased drastically. This raises the key question of whether current LLMs could violate individuals' privacy by inferring personal attributes from text given at inference time. In this work, we present the first comprehensive study on the capabilities of pretrained LLMs to infer personal attributes from text. We construct a dataset consisting of real Reddit profiles, and show that current LLMs can infer a wide range of personal attributes (e.g., location, income, sex), achieving up to $85\%$ top-1 and $95\%$ top-3 accuracy at a fraction of the cost ($100\times$) and time ($240\times$) required by humans. As people increasingly interact with LLM-powered chatbots across all aspects of life, we also explore the emerging threat of privacy-invasive chatbots trying to extract personal information through seemingly benign questions. Finally, we show that common mitigations, i.e., text anonymization and model alignment, are currently ineffective at protecting user privacy against LLM inference. Our findings highlight that current LLMs can infer personal data at a previously unattainable scale. In the absence of working defenses, we advocate for a broader discussion around LLM privacy implications beyond memorization, striving for a wider privacy protection.
Related papers
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - No Free Lunch Theorem for Privacy-Preserving LLM Inference [30.554456047738295]
This study develops a framework for inferring privacy-protected Large Language Models (LLMs)
It lays down a solid theoretical basis for examining the interplay between privacy preservation and utility.
arXiv Detail & Related papers (2024-05-31T08:22:53Z) - On Protecting the Data Privacy of Large Language Models (LLMs): A Survey [35.48984524483533]
Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language.
LLMs process and generate large amounts of data, which may threaten data privacy.
arXiv Detail & Related papers (2024-03-08T08:47:48Z) - PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models [42.20437015301152]
We present PrivLM-Bench, a benchmark for evaluating the privacy leakage of language models (LMs)
Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage.
We conduct extensive experiments on three datasets of GLUE for mainstream LMs.
arXiv Detail & Related papers (2023-11-07T14:55:52Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Multi-step Jailbreaking Privacy Attacks on ChatGPT [47.10284364632862]
We study the privacy threats from OpenAI's ChatGPT and the New Bing enhanced by ChatGPT.
We conduct extensive experiments to support our claims and discuss LLMs' privacy implications.
arXiv Detail & Related papers (2023-04-11T13:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.