LLM-PBE: Assessing Data Privacy in Large Language Models
- URL: http://arxiv.org/abs/2408.12787v2
- Date: Fri, 6 Sep 2024 04:30:50 GMT
- Title: LLM-PBE: Assessing Data Privacy in Large Language Models
- Authors: Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng He, Dawn Song,
- Abstract summary: Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
- Score: 111.58198436835036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis. Their profound capabilities in processing and interpreting complex language data, however, bring to light pressing concerns regarding data privacy, especially the risk of unintentional training data leakage. Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs. Addressing this gap, our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs. LLM-PBE is designed to analyze privacy across the entire lifecycle of LLMs, incorporating diverse attack and defense strategies, and handling various data types and metrics. Through detailed experimentation with multiple LLMs, LLM-PBE facilitates an in-depth exploration of data privacy concerns, shedding light on influential factors such as model size, data characteristics, and evolving temporal dimensions. This study not only enriches the understanding of privacy issues in LLMs but also serves as a vital resource for future research in the field. Aimed at enhancing the breadth of knowledge in this area, the findings, resources, and our full technical report are made available at https://llm-pbe.github.io/, providing an open platform for academic and practical advancements in LLM privacy assessment.
Related papers
- Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.
Their reliance on massive internet-sourced datasets for training brings notable privacy issues.
Certain application-specific scenarios may require fine-tuning these models on private data.
arXiv Detail & Related papers (2024-08-10T05:41:19Z) - HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection [44.225151701532454]
In this paper, we introduce a new framework HARMONIC for tabular data generation and evaluation.
Our framework achieves equivalent performance to existing methods with better privacy, which also demonstrates our evaluation framework for the effectiveness of synthetic data and privacy risks.
arXiv Detail & Related papers (2024-08-06T03:21:13Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
We introduce a Federated Domain-specific Knowledge Transfer framework.
It enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy.
The proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5% with a privacy budget of less than 10.
arXiv Detail & Related papers (2024-05-23T06:14:35Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability.
This paper proposes a locally differentially private framework of in-context learning (LDP-ICL)
Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL.
arXiv Detail & Related papers (2024-05-07T06:05:43Z) - On Protecting the Data Privacy of Large Language Models (LLMs): A Survey [35.48984524483533]
Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language.
LLMs process and generate large amounts of data, which may threaten data privacy.
arXiv Detail & Related papers (2024-03-08T08:47:48Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Identifying and Mitigating Privacy Risks Stemming from Language Models: A Survey [43.063650238194384]
Large Language Models (LLMs) have shown greatly enhanced performance in recent years, attributed to increased size and extensive training data.
Training data memorization in Machine Learning models scales with model size, particularly concerning for LLMs.
Memorized text sequences have the potential to be directly leaked from LLMs, posing a serious threat to data privacy.
arXiv Detail & Related papers (2023-09-27T15:15:23Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.