論文の概要: GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems
- arxiv url: http://arxiv.org/abs/2310.07378v3
- Date: Tue, 26 Nov 2024 13:08:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:32:22.796712
- Title: GARL: Genetic Algorithm-Augmented Reinforcement Learning to Detect Violations in Marker-Based Autonomous Landing Systems
- Title(参考訳): GARL: マーカーに基づく自律着陸システムにおける振動検出のための遺伝的アルゴリズム強化強化学習
- Authors: Linfeng Liang, Yao Deng, Kye Morton, Valtteri Kallinen, Alice James, Avishkar Seth, Endrowednes Kuantama, Subhas Mukhopadhyay, Richard Han, Xi Zheng,
- Abstract要約: 従来のオフラインテスト手法では、人間や動物のような動的なオブジェクトによる違反事例を見逃します。
オンラインテストの方法は、限られた予算で実行できない広範囲なトレーニング時間を必要とする。
本稿では遺伝的アルゴリズム(GA)と強化学習(RL)を組み合わせたフレームワークであるGARLを紹介する。
- 参考スコア(独自算出の注目度): 0.7461036096470347
- License:
- Abstract: Automated Uncrewed Aerial Vehicle (UAV) landing is crucial for autonomous UAV services such as monitoring, surveying, and package delivery. It involves detecting landing targets, perceiving obstacles, planning collision-free paths, and controlling UAV movements for safe landing. Failures can lead to significant losses, necessitating rigorous simulation-based testing for safety. Traditional offline testing methods, limited to static environments and predefined trajectories, may miss violation cases caused by dynamic objects like people and animals. Conversely, online testing methods require extensive training time, which is impractical with limited budgets. To address these issues, we introduce GARL, a framework combining a genetic algorithm (GA) and reinforcement learning (RL) for efficient generation of diverse and real landing system failures within a practical budget. GARL employs GA for exploring various environment setups offline, reducing the complexity of RL's online testing in simulating challenging landing scenarios. Our approach outperforms existing methods by up to 18.35% in violation rate and 58% in diversity metric. We validate most discovered violation types with real-world UAV tests, pioneering the integration of offline and online testing strategies for autonomous systems. This method opens new research directions for online testing, with our code and supplementary material available at https://github.com/lfeng0722/drone_testing/.
- Abstract(参考訳): 無人航空機(UAV)の自動着陸は、監視、測量、パッケージ配送といった自律型UAVサービスにとって不可欠である。
着陸目標の検出、障害物の認識、衝突のない経路の計画、安全に着陸するための無人機の動きの制御を含む。
失敗は大きな損失をもたらし、安全のために厳密なシミュレーションベースのテストを必要とします。
静的環境や事前に定義された軌道に制限された従来のオフラインテストメソッドは、人や動物のような動的なオブジェクトによって引き起こされる違反事件を見逃す可能性がある。
逆に、オンラインテスト手法は、限られた予算で実行できない広範囲なトレーニング時間を必要とする。
これらの問題に対処するために,GAと強化学習を組み合わせたフレームワークであるGARLを導入する。
GARLは、さまざまな環境設定をオフラインで探索するためにGAを採用しており、挑戦的な着陸シナリオをシミュレートするRLのオンラインテストの複雑さを低減している。
我々のアプローチは、既存の手法を18.35%の違反率と58%の多様性で上回ります。
我々は、実際のUAVテストで発見されたほとんどの違反タイプを検証し、自律システムのためのオフラインおよびオンラインテスト戦略の統合の先駆者となる。
この方法では、オンラインテストのための新しい研究の方向性が開かれ、コードと補足資料がhttps://github.com/lfeng0722/drone_testing/.comで公開されている。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles [4.243926243206826]
本稿では位置に基づくアプローチテストフレームワークであるPAFOTを提案する。
PAFOTは、自動走行システムの安全違反を明らかにするために、敵の運転シナリオを生成する。
PAFOTはADSをクラッシュさせる安全クリティカルなシナリオを効果的に生成し、短いシミュレーション時間で衝突を見つけることができることを示す実験である。
論文 参考訳(メタデータ) (2024-05-06T10:04:40Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT)は、学習に基づくアプローチであり、現実世界の大きな乱れの存在下で、任意の、潜在的に実現不可能な軌跡を正確に追跡することができる。
DATTは、非定常風場における可溶性および非実用性の両方の軌道に対して、競争適応性非線形およびモデル予測コントローラを著しく上回っている。
適応非線形モデル予測制御ベースラインの1/4未満である3.2ms未満の推論時間で、効率的にオンラインで実行することができる。
論文 参考訳(メタデータ) (2023-10-13T12:22:31Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Adaptive Failure Search Using Critical States from Domain Experts [9.93890332477992]
フェールサーチは、シミュレーションまたは実世界のテストにおいて、かなりの走行距離をロギングすることで行うことができる。
ASTはマルコフ決定プロセスとして失敗探索の問題を提起する手法である。
ASTフレームワークにクリティカルステートを組み込むことで,安全性違反の増大を伴う障害シナリオが生成されることを示す。
論文 参考訳(メタデータ) (2023-04-01T18:14:41Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Analyzing Robustness of the Deep Reinforcement Learning Algorithm in
Ramp Metering Applications Considering False Data Injection Attack and
Defense [0.0]
ランプメータリング(英語: Ramp metering)は、高速道路の本線への車両の走行を制御する行為である。
深部Q-Learningアルゴリズムは,ループ検出情報のみを入力として利用する。
モデルは、道路のジオメトリーやレイアウトに関わらず、ほぼすべてのランプ計測サイトに応用できる。
論文 参考訳(メタデータ) (2023-01-28T00:40:46Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
検証は、システムが日々の運転で遭遇する可能性のあるシナリオや状況において、自動運転車システムをテストに投入する。
本稿では,AVソフトウェア実装における障害事例と予期せぬ交通状況を生成するために強化学習(RL)を提案する。
論文 参考訳(メタデータ) (2020-05-22T19:00:38Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
本研究では,シミュレーションに基づく運転テストデータのスクリーニングと分類を行う手法を提案する。
本フレームワークは,S-TALIROおよびSim-ATAVツールとともに配布されている。
論文 参考訳(メタデータ) (2020-04-25T10:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。