論文の概要: Fed-GraB: Federated Long-tailed Learning with Self-Adjusting Gradient
Balancer
- arxiv url: http://arxiv.org/abs/2310.07587v2
- Date: Thu, 19 Oct 2023 07:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 18:35:22.784534
- Title: Fed-GraB: Federated Long-tailed Learning with Self-Adjusting Gradient
Balancer
- Title(参考訳): Fed-GraB: 自己調整型グラディエントバランサによる長期学習
- Authors: Zikai Xiao, Zihan Chen, Songshang Liu, Hualiang Wang, Yang Feng, Jin
Hao, Joey Tianyi Zhou, Jian Wu, Howard Hao Yang, Zuozhu Liu
- Abstract要約: 本稿では,各クライアントが局所的にヘテロジニアスなデータセットを保持するFed-LT(Federated Long-tailed Learning)タスクについて検討する。
本稿では,SGB(Self-Natural Gradient Balancer)モジュールからなる$textttFed-GraB$という手法を提案する。
我々は、CIFAR-10-LT、CIFAR-100-LT、ImageNet-LT、iistなどの代表的なデータセットに対して、textttFed-GraB$が最先端のパフォーマンスを達成することを示す。
- 参考スコア(独自算出の注目度): 47.82735112096587
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Data privacy and long-tailed distribution are the norms rather than the
exception in many real-world tasks. This paper investigates a federated
long-tailed learning (Fed-LT) task in which each client holds a locally
heterogeneous dataset; if the datasets can be globally aggregated, they jointly
exhibit a long-tailed distribution. Under such a setting, existing federated
optimization and/or centralized long-tailed learning methods hardly apply due
to challenges in (a) characterizing the global long-tailed distribution under
privacy constraints and (b) adjusting the local learning strategy to cope with
the head-tail imbalance. In response, we propose a method termed
$\texttt{Fed-GraB}$, comprised of a Self-adjusting Gradient Balancer (SGB)
module that re-weights clients' gradients in a closed-loop manner, based on the
feedback of global long-tailed distribution evaluated by a Direct Prior
Analyzer (DPA) module. Using $\texttt{Fed-GraB}$, clients can effectively
alleviate the distribution drift caused by data heterogeneity during the model
training process and obtain a global model with better performance on the
minority classes while maintaining the performance of the majority classes.
Extensive experiments demonstrate that $\texttt{Fed-GraB}$ achieves
state-of-the-art performance on representative datasets such as CIFAR-10-LT,
CIFAR-100-LT, ImageNet-LT, and iNaturalist.
- Abstract(参考訳): データプライバシと長期分布は、多くの現実世界のタスクで例外ではなく、標準である。
本稿では,各クライアントがローカルに異種データセットを持つフェデレーション・ロングテール・ラーニング(federated long-tailed learning, fed-lt)タスクについて検討する。
このような条件下では、既存のフェデレーション最適化と/または集中型ロングテール学習法はほとんど適用されない。
(a)世界的長期分布をプライバシー制約下で特徴付けること
(b)頭部の不均衡に対処するために局所学習戦略を調整すること。
そこで本研究では,DPA(Direct Prior Analyzer)モジュールによって評価された大域的長期分布のフィードバックに基づいて,クライアントの勾配を閉ループで再重み付けする自己調整型グラディエント・バランサ(SGB)モジュールからなる,$\texttt{Fed-GraB}$という手法を提案する。
クライアントは$\texttt{Fed-GraB}$を使用することで、モデルトレーニングプロセス中にデータの不均一性によって引き起こされる分散ドリフトを効果的に軽減し、多数派クラスのパフォーマンスを維持しながら、少数派クラスのパフォーマンスを向上したグローバルモデルを得ることができる。
大規模な実験では、CIFAR-10-LT、CIFAR-100-LT、ImageNet-LT、iNaturalistなどの代表的なデータセットに対して、$\texttt{Fed-GraB}$が最先端のパフォーマンスを達成することが示されている。
関連論文リスト
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
フェデレーション学習は、分散機械学習におけるプライバシの保護という課題にパラダイムを提供する。
伝統的なアプローチは、グローバルな長期データにおけるクラスワイドバイアスの現象に対処できない。
新しい手法であるFedLFは、適応ロジット調整、連続クラス中心最適化、特徴デコリレーションという、局所的なトレーニングフェーズに3つの修正を導入している。
論文 参考訳(メタデータ) (2024-09-18T16:25:29Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning(FL)は、クライアントがローカルトレーニングデータを共有せずに、局所的にトレーニングされたモデルを集約することで、グローバルモデルの共同トレーニングを可能にする機械学習パラダイムである。
本稿では,適応自己蒸留(ASD)に基づく新たな正規化手法を提案する。
我々の正規化方式は,グローバルモデルエントロピーとクライアントのラベル分布に基づいて,クライアントのトレーニングデータに適応的に適応的に適応する。
論文 参考訳(メタデータ) (2023-05-31T07:00:42Z) - Towards Unbiased Training in Federated Open-world Semi-supervised
Learning [15.08153616709326]
本稿では,分散およびオープンな環境における重要な課題を解決するための,新しいフェデレートオープンワールドセミスーパーバイドラーニング(FedoSSL)フレームワークを提案する。
我々は,不確実性に留意された損失を抑えることで,局所的に見えないクラスとグローバルな見えないクラスの間のバイアスのあるトレーニングを緩和する。
提案したFedoSSLは、ベンチマークや実世界のデータセットに関する広範な実験を通じて検証される、最先端のFLメソッドに容易に適用することができる。
論文 参考訳(メタデータ) (2023-05-01T11:12:37Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - GRP-FED: Addressing Client Imbalance in Federated Learning via
Global-Regularized Personalization [6.592268037926868]
本稿では,データ不均衡問題に対処するため,Global-Regularized Personalization (GRP-FED)を提案する。
適応アグリゲーションでは、グローバルモデルは複数のクライアントを公平に扱い、グローバルな長期的問題を緩和する。
我々のGRP-FEDは,グローバルシナリオとローカルシナリオの両方で改善されている。
論文 参考訳(メタデータ) (2021-08-31T14:09:04Z) - Class Balancing GAN with a Classifier in the Loop [58.29090045399214]
本稿では,GANを学習するための理論的動機付けクラスバランス正則化器を提案する。
我々の正規化器は、訓練済みの分類器からの知識を利用して、データセット内のすべてのクラスのバランスの取れた学習を確実にします。
複数のデータセットにまたがる既存手法よりも優れた性能を達成し,長期分布の学習表現における正規化器の有用性を実証する。
論文 参考訳(メタデータ) (2021-06-17T11:41:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。