Context-Enhanced Detector For Building Detection From Remote Sensing Images
- URL: http://arxiv.org/abs/2310.07638v2
- Date: Tue, 9 Jul 2024 07:03:02 GMT
- Title: Context-Enhanced Detector For Building Detection From Remote Sensing Images
- Authors: Ziyue Huang, Mingming Zhang, Qingjie Liu, Wei Wang, Zhe Dong, Yunhong Wang,
- Abstract summary: We propose a novel approach called Context-Enhanced Detector (CEDet)
Our approach utilizes a three-stage cascade structure to enhance the extraction of contextual information and improve building detection accuracy.
Our method achieves state-of-the-art performance on three building detection benchmarks, including CNBuilding-9P, CNBuilding-23P, and SpaceNet.
- Score: 41.3238458718635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of building detection from remote sensing images has made significant progress, but faces challenges in achieving high-accuracy detection due to the diversity in building appearances and the complexity of vast scenes. To address these challenges, we propose a novel approach called Context-Enhanced Detector (CEDet). Our approach utilizes a three-stage cascade structure to enhance the extraction of contextual information and improve building detection accuracy. Specifically, we introduce two modules: the Semantic Guided Contextual Mining (SGCM) module, which aggregates multi-scale contexts and incorporates an attention mechanism to capture long-range interactions, and the Instance Context Mining Module (ICMM), which captures instance-level relationship context by constructing a spatial relationship graph and aggregating instance features. Additionally, we introduce a semantic segmentation loss based on pseudo-masks to guide contextual information extraction. Our method achieves state-of-the-art performance on three building detection benchmarks, including CNBuilding-9P, CNBuilding-23P, and SpaceNet.
Related papers
- Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [9.109484087832058]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.
To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)
To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - Multi-task Learning with 3D-Aware Regularization [55.97507478913053]
We propose a structured 3D-aware regularizer which interfaces multiple tasks through the projection of features extracted from an image encoder to a shared 3D feature space.
We show that the proposed method is architecture agnostic and can be plugged into various prior multi-task backbones to improve their performance.
arXiv Detail & Related papers (2023-10-02T08:49:56Z) - Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition [18.38295403066007]
HDANet integrates feature disentanglement and alignment into a unified framework.
The proposed method demonstrates impressive robustness across nine operating conditions in the MSTAR dataset.
arXiv Detail & Related papers (2023-04-07T09:11:29Z) - FGAHOI: Fine-Grained Anchors for Human-Object Interaction Detection [4.534713782093219]
A novel end-to-end transformer-based framework (FGAHOI) is proposed to alleviate the above problems.
FGAHOI comprises three dedicated components namely, multi-scale sampling (MSS), hierarchical spatial-aware merging (HSAM) and task-aware merging mechanism (TAM)
arXiv Detail & Related papers (2023-01-08T03:53:50Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
We propose a framework to learn the discriminative part features and explore correlations with a feature transformation module.
Our proposed approach does not rely on additional part branches and reaches state-the-of-art performance on 3-of-the-level object recognition.
arXiv Detail & Related papers (2022-12-28T03:45:56Z) - A Tri-Layer Plugin to Improve Occluded Detection [100.99802831241583]
We propose a simple '' module for the detection head of two-stage object detectors to improve the recall of partially occluded objects.
The module predicts a tri-layer of segmentation masks for the target object, the occluder and the occludee, and by doing so is able to better predict the mask of the target object.
We also establish a COCO evaluation dataset to measure the recall performance of partially occluded and separated objects.
arXiv Detail & Related papers (2022-10-18T17:59:51Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - VIN: Voxel-based Implicit Network for Joint 3D Object Detection and
Segmentation for Lidars [12.343333815270402]
A unified neural network structure is presented for joint 3D object detection and point cloud segmentation.
We leverage rich supervision from both detection and segmentation labels rather than using just one of them.
arXiv Detail & Related papers (2021-07-07T02:16:20Z) - DCANet: Dense Context-Aware Network for Semantic Segmentation [4.960604671885823]
We propose a novel module, named Context-Aware (DCA) module, to adaptively integrate local detail information with global dependencies.
Driven by the contextual relationship, the DCA module can better achieve the aggregation of context information to generate more powerful features.
We empirically demonstrate the promising performance of our approach with extensive experiments on three challenging datasets.
arXiv Detail & Related papers (2021-04-06T14:12:22Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.