Extreme Image Transformations Facilitate Robust Latent Object
Representations
- URL: http://arxiv.org/abs/2310.07725v1
- Date: Tue, 19 Sep 2023 21:31:25 GMT
- Title: Extreme Image Transformations Facilitate Robust Latent Object
Representations
- Authors: Girik Malik and Dakarai Crowder and Ennio Mingolla
- Abstract summary: Adversarial attacks can affect the object recognition capabilities of machines in wild.
These can often result from spurious correlations between input and class labels, and are prone to memorization in large networks.
In this work, we show that fine-tuning any pretrained off-the-shelf network with Extreme Image Transformations (EIT) not only helps in learning a robust latent representation, it also improves the performance of these networks against common adversarial attacks of various intensities.
- Score: 1.2277343096128712
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adversarial attacks can affect the object recognition capabilities of
machines in wild. These can often result from spurious correlations between
input and class labels, and are prone to memorization in large networks. While
networks are expected to do automated feature selection, it is not effective at
the scale of the object. Humans, however, are able to select the minimum set of
features required to form a robust representation of an object. In this work,
we show that finetuning any pretrained off-the-shelf network with Extreme Image
Transformations (EIT) not only helps in learning a robust latent
representation, it also improves the performance of these networks against
common adversarial attacks of various intensities. Our EIT trained networks
show strong activations in the object regions even when tested with more
intense noise, showing promising generalizations across different kinds of
adversarial attacks.
Related papers
- Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains.
We propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity.
arXiv Detail & Related papers (2024-02-28T16:16:51Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
Recent object (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios.
We propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and camouflaged zooming in and out.
Our framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks.
arXiv Detail & Related papers (2023-10-31T06:11:23Z) - A Perturbation Resistant Transformation and Classification System for
Deep Neural Networks [0.685316573653194]
Deep convolutional neural networks accurately classify a diverse range of natural images, but may be easily deceived when designed.
In this paper, we design a multi-pronged training, unbounded input transformation, and image ensemble system that is attack and not easily estimated.
arXiv Detail & Related papers (2022-08-25T02:58:47Z) - Understanding Robust Learning through the Lens of Representation
Similarities [37.66877172364004]
robustness to adversarial examples has emerged as a desirable property for deep neural networks (DNNs)
In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training.
arXiv Detail & Related papers (2022-06-20T16:06:20Z) - Stereoscopic Universal Perturbations across Different Architectures and
Datasets [60.021985610201156]
We study the effect of adversarial perturbations of images on deep stereo matching networks for the disparity estimation task.
We present a method to craft a single set of perturbations that, when added to any stereo image pair in a dataset, can fool a stereo network.
Our perturbations can increase D1-error (akin to fooling rate) of state-of-the-art stereo networks from 1% to as much as 87%.
arXiv Detail & Related papers (2021-12-12T02:11:31Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
convolutional neural networks (CNNs) have proved to reach super-human performance in visual recognition tasks.
CNNs can easily be fooled by adversarial examples, i.e., maliciously-crafted images that force the networks to predict an incorrect output.
This paper extensively explores the detection of adversarial examples via image transformations and proposes a novel methodology.
arXiv Detail & Related papers (2021-01-27T14:50:41Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z) - TREND: Transferability based Robust ENsemble Design [6.663641564969944]
We study the effect of network architecture, input, weight and activation quantization on transferability of adversarial samples.
We show that transferability is significantly hampered by input quantization between source and target.
We propose a new state-of-the-art ensemble attack to combat this.
arXiv Detail & Related papers (2020-08-04T13:38:14Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
We train networks to form coarse impressions based on the information in higher bit planes, and use the lower bit planes only to refine their prediction.
We demonstrate that, by imposing consistency on the representations learned across differently quantized images, the adversarial robustness of networks improves significantly.
arXiv Detail & Related papers (2020-04-01T09:31:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.