Warfare:Breaking the Watermark Protection of AI-Generated Content
- URL: http://arxiv.org/abs/2310.07726v4
- Date: Mon, 03 Feb 2025 06:53:40 GMT
- Title: Warfare:Breaking the Watermark Protection of AI-Generated Content
- Authors: Guanlin Li, Yifei Chen, Jie Zhang, Shangwei Guo, Han Qiu, Guoyin Wang, Jiwei Li, Tianwei Zhang,
- Abstract summary: Warfare is a unified attack framework leveraging a pre-trained diffusion model for content processing and a generative adversarial network for watermark manipulation.
We show that Warfare achieves high success rates while preserving content quality.
Warfare-Plus enhances efficiency without compromising effectiveness.
- Score: 35.3860968694922
- License:
- Abstract: AI-Generated Content (AIGC) is rapidly expanding, with services using advanced generative models to create realistic images and fluent text. Regulating such content is crucial to prevent policy violations, such as unauthorized commercialization or unsafe content distribution. Watermarking is a promising solution for content attribution and verification, but we demonstrate its vulnerability to two key attacks: (1) Watermark removal, where adversaries erase embedded marks to evade regulation, and (2) Watermark forging, where they generate illicit content with forged watermarks, leading to misattribution. We propose Warfare, a unified attack framework leveraging a pre-trained diffusion model for content processing and a generative adversarial network for watermark manipulation. Evaluations across datasets and embedding setups show that Warfare achieves high success rates while preserving content quality. We further introduce Warfare-Plus, which enhances efficiency without compromising effectiveness. The code can be found in https://github.com/GuanlinLee/warfare.
Related papers
- SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models [11.906245347904289]
We introduce SWA-LDM, a novel approach that enhances watermarking by randomizing the embedding process.
Our proposed watermark presence attack reveals the inherent vulnerabilities of existing latent-based watermarking methods.
This work represents a pivotal step towards securing LDM-generated images against unauthorized use.
arXiv Detail & Related papers (2025-02-14T16:55:45Z) - RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
We present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark.
Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
arXiv Detail & Related papers (2024-12-22T04:36:27Z) - ESpeW: Robust Copyright Protection for LLM-based EaaS via Embedding-Specific Watermark [50.08021440235581]
Embeds as a Service (Eding) is emerging as a crucial role in AI applications.
Eding is vulnerable to model extraction attacks, highlighting the urgent need for copyright protection.
We propose a novel embedding-specific watermarking (ESpeW) mechanism to offer robust copyright protection for Eding.
arXiv Detail & Related papers (2024-10-23T04:34:49Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisible watermarks safeguard images' copyrights by embedding hidden messages only detectable by owners.
We propose a family of regeneration attacks to remove these invisible watermarks.
The proposed attack method first adds random noise to an image to destroy the watermark and then reconstructs the image.
arXiv Detail & Related papers (2023-06-02T23:29:28Z) - Evading Watermark based Detection of AI-Generated Content [45.47476727209842]
A generative AI model can generate extremely realistic-looking content.
Watermark has been leveraged to detect AI-generated content.
A content is detected as AI-generated if a similar watermark can be decoded from it.
arXiv Detail & Related papers (2023-05-05T19:20:29Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.