A Training-Free Plug-and-Play Watermark Framework for Stable Diffusion
- URL: http://arxiv.org/abs/2404.05607v1
- Date: Mon, 8 Apr 2024 15:29:46 GMT
- Title: A Training-Free Plug-and-Play Watermark Framework for Stable Diffusion
- Authors: Guokai Zhang, Lanjun Wang, Yuting Su, An-An Liu,
- Abstract summary: Existing approaches involve training components or entire SDs to embed a watermark in generated images for traceability and responsibility attribution.
In the era of AI-generated content (AIGC), the rapid iteration of SDs renders retraining with watermark models costly.
We propose a training-free plug-and-play watermark framework for SDs.
- Score: 47.97443554073836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, the family of Stable Diffusion (SD) models has gained prominence for its high quality outputs and scalability. This has also raised security concerns on social media, as malicious users can create and disseminate harmful content. Existing approaches involve training components or entire SDs to embed a watermark in generated images for traceability and responsibility attribution. However, in the era of AI-generated content (AIGC), the rapid iteration of SDs renders retraining with watermark models costly. To address this, we propose a training-free plug-and-play watermark framework for SDs. Without modifying any components of SDs, we embed diverse watermarks in the latent space, adapting to the denoising process. Our experimental findings reveal that our method effectively harmonizes image quality and watermark invisibility. Furthermore, it performs robustly under various attacks. We also have validated that our method is generalized to multiple versions of SDs, even without retraining the watermark model.
Related papers
- SWA-LDM: Toward Stealthy Watermarks for Latent Diffusion Models [11.906245347904289]
We introduce SWA-LDM, a novel approach that enhances watermarking by randomizing the embedding process.
Our proposed watermark presence attack reveals the inherent vulnerabilities of existing latent-based watermarking methods.
This work represents a pivotal step towards securing LDM-generated images against unauthorized use.
arXiv Detail & Related papers (2025-02-14T16:55:45Z) - On the Coexistence and Ensembling of Watermarks [93.15379331904602]
We find that various open-source watermarks can coexist with only minor impacts on image quality and decoding robustness.
We show how ensembling can increase the overall message capacity and enable new trade-offs between capacity, accuracy, robustness and image quality, without needing to retrain the base models.
arXiv Detail & Related papers (2025-01-29T00:37:06Z) - SuperMark: Robust and Training-free Image Watermarking via Diffusion-based Super-Resolution [27.345134138673945]
We propose SuperMark, a robust, training-free watermarking framework.
SuperMark embeds the watermark into initial Gaussian noise using existing techniques.
It then applies pre-trained Super-Resolution models to denoise the watermarked noise, producing the final watermarked image.
For extraction, the process is reversed: the watermarked image is inverted back to the initial watermarked noise via DDIM Inversion, from which the embedded watermark is extracted.
Experiments demonstrate that SuperMark achieves fidelity comparable to existing methods while significantly improving robustness.
arXiv Detail & Related papers (2024-12-13T11:20:59Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
Stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing.
The exposure of AI-created content on public platforms could raise both legal and ethical risks.
In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely SafeSD) to adaptive implant the watermarks into the imperceptible structure.
arXiv Detail & Related papers (2024-07-18T05:53:17Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
Diffusion models have achieved remarkable success in generating high-quality images.
Recent works aim to let SD models output watermarked content for post-hoc forensics.
We propose textttmethod as the first implementation under this scenario.
arXiv Detail & Related papers (2024-05-18T01:25:47Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
Existing methods face the dilemma of image quality and watermark robustness.
Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression.
We propose Latent Watermark, which injects and detects watermarks in the latent diffusion space.
arXiv Detail & Related papers (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.