Self-supervised Representation Learning From Random Data Projectors
- URL: http://arxiv.org/abs/2310.07756v2
- Date: Wed, 20 Mar 2024 18:00:04 GMT
- Title: Self-supervised Representation Learning From Random Data Projectors
- Authors: Yi Sui, Tongzi Wu, Jesse C. Cresswell, Ga Wu, George Stein, Xiao Shi Huang, Xiaochen Zhang, Maksims Volkovs,
- Abstract summary: This paper presents an SSRL approach that can be applied to any data modality and network architecture.
We show that high-quality data representations can be learned by reconstructing random data projections.
- Score: 13.764897214965766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised representation learning~(SSRL) has advanced considerably by exploiting the transformation invariance assumption under artificially designed data augmentations. While augmentation-based SSRL algorithms push the boundaries of performance in computer vision and natural language processing, they are often not directly applicable to other data modalities, and can conflict with application-specific data augmentation constraints. This paper presents an SSRL approach that can be applied to any data modality and network architecture because it does not rely on augmentations or masking. Specifically, we show that high-quality data representations can be learned by reconstructing random data projections. We evaluate the proposed approach on a wide range of representation learning tasks that span diverse modalities and real-world applications. We show that it outperforms multiple state-of-the-art SSRL baselines. Due to its wide applicability and strong empirical results, we argue that learning from randomness is a fruitful research direction worthy of attention and further study.
Related papers
- An MRP Formulation for Supervised Learning: Generalized Temporal Difference Learning Models [20.314426291330278]
In traditional statistical learning, data points are usually assumed to be independently and identically distributed (i.i.d.)
This paper presents a contrasting viewpoint, perceiving data points as interconnected and employing a Markov reward process (MRP) for data modeling.
We reformulate the typical supervised learning as an on-policy policy evaluation problem within reinforcement learning (RL), introducing a generalized temporal difference (TD) learning algorithm as a resolution.
arXiv Detail & Related papers (2024-04-23T21:02:58Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Representation Learning in Deep RL via Discrete Information Bottleneck [39.375822469572434]
We study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information.
We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations.
arXiv Detail & Related papers (2022-12-28T14:38:12Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
Popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training.
Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models.
We aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data.
arXiv Detail & Related papers (2022-06-06T04:59:44Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
We propose Multi-Augmentations for Self-Supervised Learning (MA-SSRL), which fully searched for various augmentation policies to build the entire pipeline.
MA-SSRL successfully learns the invariant feature representation and presents an efficient, effective, and adaptable data augmentation pipeline for self-supervised pre-training.
arXiv Detail & Related papers (2022-05-24T04:18:39Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.