Representation Retrieval Learning for Heterogeneous Data Integration
- URL: http://arxiv.org/abs/2503.09494v2
- Date: Thu, 13 Mar 2025 16:39:15 GMT
- Title: Representation Retrieval Learning for Heterogeneous Data Integration
- Authors: Qi Xu, Annie Qu,
- Abstract summary: We propose a Representation Retrieval ($R2$) framework, which integrates a representation learning module (the representer) with a sparsity-induced machine learning model (the learner)<n>We show that our framework relaxes the conventional full-sharing assumption in multi-task learning, allowing for partially shared structures, and that SIP can improve the convergence rate of the excess risk bound.
- Score: 6.332807035771891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data, large-scale, multi-modal datasets are increasingly ubiquitous, offering unprecedented opportunities for predictive modeling and scientific discovery. However, these datasets often exhibit complex heterogeneity, such as covariate shift, posterior drift, and missing modalities, that can hinder the accuracy of existing prediction algorithms. To address these challenges, we propose a novel Representation Retrieval ($R^2$) framework, which integrates a representation learning module (the representer) with a sparsity-induced machine learning model (the learner). Moreover, we introduce the notion of "integrativeness" for representers, characterized by the effective data sources used in learning representers, and propose a Selective Integration Penalty (SIP) to explicitly improve the property. Theoretically, we demonstrate that the $R^2$ framework relaxes the conventional full-sharing assumption in multi-task learning, allowing for partially shared structures, and that SIP can improve the convergence rate of the excess risk bound. Extensive simulation studies validate the empirical performance of our framework, and applications to two real-world datasets further confirm its superiority over existing approaches.
Related papers
- AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Few-Shot, No Problem: Descriptive Continual Relation Extraction [27.296604792388646]
Few-shot Continual Relation Extraction is a crucial challenge for enabling AI systems to identify and adapt to evolving relationships in real-world domains.<n>Traditional memory-based approaches often overfit to limited samples, failing to reinforce old knowledge.<n>We propose a novel retrieval-based solution, starting with a large language model to generate descriptions for each relation.
arXiv Detail & Related papers (2025-02-27T23:44:30Z) - $α$-TCVAE: On the relationship between Disentanglement and Diversity [21.811889512977924]
In this work, we introduce $alpha$-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound.
We present quantitative analyses that support the idea that disentangled representations lead to better generative capabilities and diversity.
Our results demonstrate that $alpha$-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations.
arXiv Detail & Related papers (2024-11-01T13:50:06Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling on a continuous domain for the data prediction task of (multimodal) self-supervised representation learning.<n>We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.<n>We propose a novel non-parametric method for approximating the sum of conditional probability densities required by MIS.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
We introduce a bidirectional weighted graph-based framework to learn factorized attributes and their interrelations within complex data.
Specifically, we propose a $beta$-VAE based module to extract factors as the initial nodes of the graph.
By integrating these complementary modules, our model successfully achieves fine-grained, practical and unsupervised disentanglement.
arXiv Detail & Related papers (2024-07-26T15:32:21Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Augmentation Invariant Manifold Learning [0.5827521884806071]
We introduce a new representation learning method called augmentation invariant manifold learning.<n>Compared with existing self-supervised methods, the new method simultaneously exploits the manifold's geometric structure and invariant property of augmented data.<n>Our theoretical investigation characterizes the role of data augmentation in the proposed method and reveals why and how the data representation learned from augmented data can improve the $k$-nearest neighbor in the downstream analysis.
arXiv Detail & Related papers (2022-11-01T13:42:44Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
This research studies the realistic scenario in which all modalities and class labels are available for model training.
We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities.
arXiv Detail & Related papers (2021-10-09T17:22:24Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.