An automated approach for improving the inference latency and energy
efficiency of pretrained CNNs by removing irrelevant pixels with focused
convolutions
- URL: http://arxiv.org/abs/2310.07782v1
- Date: Wed, 11 Oct 2023 18:07:37 GMT
- Title: An automated approach for improving the inference latency and energy
efficiency of pretrained CNNs by removing irrelevant pixels with focused
convolutions
- Authors: Caleb Tung, Nicholas Eliopoulos, Purvish Jajal, Gowri Ramshankar,
Chen-Yun Yang, Nicholas Synovic, Xuecen Zhang, Vipin Chaudhary, George K.
Thiruvathukal, Yung-Hsiang Lu
- Abstract summary: We propose a novel, automated method to make a pretrained CNN more energy-efficient without re-training.
Our modified focused convolution operation saves inference latency (by up to 25%) and energy costs (by up to 22%) on various popular pretrained CNNs.
- Score: 0.8706730566331037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision often uses highly accurate Convolutional Neural Networks
(CNNs), but these deep learning models are associated with ever-increasing
energy and computation requirements. Producing more energy-efficient CNNs often
requires model training which can be cost-prohibitive. We propose a novel,
automated method to make a pretrained CNN more energy-efficient without
re-training. Given a pretrained CNN, we insert a threshold layer that filters
activations from the preceding layers to identify regions of the image that are
irrelevant, i.e. can be ignored by the following layers while maintaining
accuracy. Our modified focused convolution operation saves inference latency
(by up to 25%) and energy costs (by up to 22%) on various popular pretrained
CNNs, with little to no loss in accuracy.
Related papers
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - Convolutional Neural Networks Exploiting Attributes of Biological
Neurons [7.3517426088986815]
Deep neural networks like Convolutional Neural Networks (CNNs) have emerged as front-runners, often surpassing human capabilities.
Here, we integrate the principles of biological neurons in certain layer(s) of CNNs.
We aim to extract image features to use as input to CNNs, hoping to enhance training efficiency and achieve better accuracy.
arXiv Detail & Related papers (2023-11-14T16:58:18Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
Vision Transformers (ViT) have emerged as a powerful alternative to convolutional networks (CNNs)
In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers.
With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains.
arXiv Detail & Related papers (2021-06-10T14:56:10Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - A CNN-based Feature Space for Semi-supervised Incremental Learning in
Assisted Living Applications [2.1485350418225244]
We propose using the feature space that results from the training dataset to automatically label problematic images.
The resulting semi-supervised incremental learning process allows improving the classification accuracy of new instances by 40%.
arXiv Detail & Related papers (2020-11-11T12:31:48Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.