Continual Learning via Manifold Expansion Replay
- URL: http://arxiv.org/abs/2310.08038v1
- Date: Thu, 12 Oct 2023 05:09:27 GMT
- Title: Continual Learning via Manifold Expansion Replay
- Authors: Zihao Xu, Xuan Tang, Yufei Shi, Jianfeng Zhang, Jian Yang, Mingsong
Chen, Xian Wei
- Abstract summary: Catastrophic forgetting is a major challenge to continual learning.
We propose a novel replay strategy called Replay Manifold Expansion (MaER)
We show that the proposed method significantly improves the accuracy in continual learning setup, outperforming the state of the arts.
- Score: 36.27348867557826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In continual learning, the learner learns multiple tasks in sequence, with
data being acquired only once for each task. Catastrophic forgetting is a major
challenge to continual learning. To reduce forgetting, some existing
rehearsal-based methods use episodic memory to replay samples of previous
tasks. However, in the process of knowledge integration when learning a new
task, this strategy also suffers from catastrophic forgetting due to an
imbalance between old and new knowledge. To address this problem, we propose a
novel replay strategy called Manifold Expansion Replay (MaER). We argue that
expanding the implicit manifold of the knowledge representation in the episodic
memory helps to improve the robustness and expressiveness of the model. To this
end, we propose a greedy strategy to keep increasing the diameter of the
implicit manifold represented by the knowledge in the buffer during memory
management. In addition, we introduce Wasserstein distance instead of cross
entropy as distillation loss to preserve previous knowledge. With extensive
experimental validation on MNIST, CIFAR10, CIFAR100, and TinyImageNet, we show
that the proposed method significantly improves the accuracy in continual
learning setup, outperforming the state of the arts.
Related papers
- Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation [3.8506666685467343]
In continual learning, previous knowledge is forgotten when a model learns new tasks.
In this paper, we tried to solve this problem by acquiring transferable knowledge through self-distillation.
Our proposed method outperformed conventional methods by experiments on CIFAR10, CIFAR100, and MiniimageNet datasets.
arXiv Detail & Related papers (2024-09-17T16:26:33Z) - TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning [7.627299398469962]
We introduce TEAL, a novel approach to populate the memory with exemplars.
We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks.
arXiv Detail & Related papers (2024-06-30T12:09:08Z) - Lifelong Event Detection with Embedding Space Separation and Compaction [30.05158209938146]
Existing lifelong event detection methods typically maintain a memory module and replay the stored memory data during the learning of a new task.
The simple combination of memory data and new-task samples can still result in substantial forgetting of previously acquired knowledge.
We propose a novel method based on embedding space separation and compaction.
arXiv Detail & Related papers (2024-04-03T06:51:49Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - Detachedly Learn a Classifier for Class-Incremental Learning [11.865788374587734]
We present an analysis that the failure of vanilla experience replay (ER) comes from unnecessary re-learning of previous tasks and incompetence to distinguish current task from the previous ones.
We propose a novel replay strategy task-aware experience replay.
Experimental results show our method outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2023-02-23T01:35:44Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Class-Incremental Continual Learning into the eXtended DER-verse [17.90483695137098]
This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER)
Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data.
We show that the application of these strategies leads to remarkable improvements.
arXiv Detail & Related papers (2022-01-03T17:14:30Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
We propose a novel training paradigm called Remembering for the Right Reasons (RRR)
RRR stores visual model explanations for each example in the buffer and ensures the model has "the right reasons" for its predictions.
We demonstrate how RRR can be easily added to any memory or regularization-based approach and results in reduced forgetting.
arXiv Detail & Related papers (2020-10-04T10:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.