TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning
- URL: http://arxiv.org/abs/2407.00673v1
- Date: Sun, 30 Jun 2024 12:09:08 GMT
- Title: TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning
- Authors: Shahar Shaul-Ariel, Daphna Weinshall,
- Abstract summary: We introduce TEAL, a novel approach to populate the memory with exemplars.
We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks.
- Score: 7.627299398469962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Learning is an unresolved challenge, whose relevance increases when considering modern applications. Unlike the human brain, trained deep neural networks suffer from a phenomenon called Catastrophic Forgetting, where they progressively lose previously acquired knowledge upon learning new tasks. To mitigate this problem, numerous methods have been developed, many relying on replaying past exemplars during new task training. However, as the memory allocated for replay decreases, the effectiveness of these approaches diminishes. On the other hand, maintaining a large memory for the purpose of replay is inefficient and often impractical. Here we introduce TEAL, a novel approach to populate the memory with exemplars, that can be integrated with various experience-replay methods and significantly enhance their performance on small memory buffers. We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks, with a small memory buffer of 1-3 exemplars per class in the final task. This confirms the hypothesis that when memory is scarce, it is best to prioritize the most typical data.
Related papers
- Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation [3.8506666685467343]
In continual learning, previous knowledge is forgotten when a model learns new tasks.
In this paper, we tried to solve this problem by acquiring transferable knowledge through self-distillation.
Our proposed method outperformed conventional methods by experiments on CIFAR10, CIFAR100, and MiniimageNet datasets.
arXiv Detail & Related papers (2024-09-17T16:26:33Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Continual Learning via Manifold Expansion Replay [36.27348867557826]
Catastrophic forgetting is a major challenge to continual learning.
We propose a novel replay strategy called Replay Manifold Expansion (MaER)
We show that the proposed method significantly improves the accuracy in continual learning setup, outperforming the state of the arts.
arXiv Detail & Related papers (2023-10-12T05:09:27Z) - Saliency-Guided Hidden Associative Replay for Continual Learning [13.551181595881326]
Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning.
This paper presents the Saliency Guided Hidden Associative Replay for Continual Learning.
This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding.
arXiv Detail & Related papers (2023-10-06T15:54:12Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Memory Replay with Data Compression for Continual Learning [80.95444077825852]
We propose memory replay with data compression to reduce the storage cost of old training samples.
We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.
arXiv Detail & Related papers (2022-02-14T10:26:23Z) - Saliency Guided Experience Packing for Replay in Continual Learning [6.417011237981518]
We propose a new approach for experience replay, where we select the past experiences by looking at the saliency maps.
While learning a new task, we replay these memory patches with appropriate zero-padding to remind the model about its past decisions.
arXiv Detail & Related papers (2021-09-10T15:54:58Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
We consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL)
We propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation.
Our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks.
arXiv Detail & Related papers (2021-06-17T17:56:08Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
We present Stored Embeddings for Efficient Reinforcement Learning (SEER)
SEER is a simple modification of existing off-policy deep reinforcement learning methods.
We show that SEER does not degrade the performance of RLizable agents while significantly saving computation and memory.
arXiv Detail & Related papers (2021-03-04T08:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.