論文の概要: Sentinel: An Aggregation Function to Secure Decentralized Federated Learning
- arxiv url: http://arxiv.org/abs/2310.08097v4
- Date: Wed, 4 Sep 2024 08:27:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 12:43:35.641957
- Title: Sentinel: An Aggregation Function to Secure Decentralized Federated Learning
- Title(参考訳): Sentinel: 分散型フェデレーション学習をセキュアにするためのアグリゲーション機能
- Authors: Chao Feng, Alberto Huertas Celdrán, Janosch Baltensperger, Enrique Tomás Martínez Beltrán, Pedro Miguel Sánchez Sánchez, Gérôme Bovet, Burkhard Stiller,
- Abstract要約: Decentralized Federated Learning (DFL)は、協調モデルをトレーニングするための革新的なパラダイムとして登場し、単一障害点に対処する。
既存の防御機構は集中型FLのために設計されており、DFLの特異性を十分に活用していない。
この研究は、DFLの毒殺攻撃に対抗する防衛戦略であるSentinelを紹介した。
- 参考スコア(独自算出の注目度): 9.046402244232343
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Decentralized Federated Learning (DFL) emerges as an innovative paradigm to train collaborative models, addressing the single point of failure limitation. However, the security and trustworthiness of FL and DFL are compromised by poisoning attacks, negatively impacting its performance. Existing defense mechanisms have been designed for centralized FL and they do not adequately exploit the particularities of DFL. Thus, this work introduces Sentinel, a defense strategy to counteract poisoning attacks in DFL. Sentinel leverages the accessibility of local data and defines a three-step aggregation protocol consisting of similarity filtering, bootstrap validation, and normalization to safeguard against malicious model updates. Sentinel has been evaluated with diverse datasets and data distributions. Besides, various poisoning attack types and threat levels have been verified. The results improve the state-of-the-art performance against both untargeted and targeted poisoning attacks when data follows an IID (Independent and Identically Distributed) configuration. Besides, under non-IID configuration, it is analyzed how performance degrades both for Sentinel and other state-of-the-art robust aggregation methods.
- Abstract(参考訳): Decentralized Federated Learning (DFL)は、協調モデルをトレーニングするための革新的なパラダイムとして登場し、単一障害点に対処する。
しかし、FLとDFLの安全性と信頼性は、毒性攻撃によって損なわれ、その性能に悪影響を及ぼす。
既存の防御機構は集中型FLのために設計されており、DFLの特異性を十分に活用していない。
そこで本研究では,DFLの毒殺対策戦略であるSentinelを紹介した。
Sentinelはローカルデータのアクセシビリティを活用し、類似性のフィルタリング、ブートストラップ検証、悪意のあるモデル更新に対する保護のための正規化からなる3段階のアグリゲーションプロトコルを定義する。
Sentinelは多様なデータセットとデータ分散で評価されている。
毒の種類や脅威レベルも確認されている。
その結果、IID(Independent and Identically Distributed)設定に従えば、未ターゲットおよびターゲットの毒殺攻撃に対する最先端のパフォーマンスが向上する。
さらに、非IID構成下では、Sentinelと他の最先端のロバストアグリゲーション手法の両方でパフォーマンスが劣化するかを解析する。
関連論文リスト
- Byzantine-Robust Decentralized Federated Learning [30.33876141358171]
フェデレーション・ラーニング(FL)は、複数のクライアントがプライベートデータを公開せずに、共同で機械学習モデルをトレーニングすることを可能にする。
分散学習(DFL)アーキテクチャは、クライアントがサーバーレスとピアツーピアの方法でモデルを協調的にトレーニングできるように提案されている。
悪意のあるクライアントは、近隣のクライアントに慎重に構築されたローカルモデルを送信することでシステムを操作できる。
本稿では,DFLにおける毒殺対策として,BALANCE (Byzantine-robust averaging through local similarity in decentralization) というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-14T21:28:37Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
フェデレートラーニング(FL)は、プライバシを保存する分散トレーニングデータを引き出す上で魅力的なものだ。
本研究では, ベニグアのクライアントが, 局所的に精製されたモデルの信頼性のある歴史的特徴を活用できる自己浄化FL(SPFL)手法を提案する。
実験により,SPFLは様々な毒殺攻撃に対して,最先端のFL防御に優れることを示した。
論文 参考訳(メタデータ) (2023-09-19T13:31:33Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Mitigating Communications Threats in Decentralized Federated Learning
through Moving Target Defense [0.0]
分散フェデレーションラーニング(DFL)は、フェデレーション参加者間の機械学習モデルのトレーニングを可能にした。
本稿では,DFLプラットフォームに対する通信ベースの攻撃に対抗するセキュリティモジュールを提案する。
セキュリティモジュールの有効性は、MNISTデータセットと日食攻撃の実験を通じて検証される。
論文 参考訳(メタデータ) (2023-07-21T17:43:50Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - Untargeted Poisoning Attack Detection in Federated Learning via Behavior
Attestation [7.979659145328856]
Federated Learning(FL)は、機械学習(ML)におけるパラダイムであり、データプライバシ、セキュリティ、アクセス権、異種情報問題へのアクセスを扱う。
その利点にもかかわらず、flベースのml技術によるサイバー攻撃は利益を損なう可能性がある。
悪意のあるワーカを検出するために,状態永続化を通じて個々のノードのトレーニングを監視する防御機構であるattestedflを提案する。
論文 参考訳(メタデータ) (2021-01-24T20:52:55Z) - A Secure Federated Learning Framework for 5G Networks [44.40119258491145]
分散トレーニングデータセットを使用して機械学習モデルを構築するための新たなパラダイムとして、フェデレートラーニング(FL)が提案されている。
重大なセキュリティ上の脅威は2つあり、毒殺とメンバーシップ推論攻撃である。
ブロックチェーンベースのセキュアなFLフレームワークを提案し、スマートコントラクトを作成し、悪意のあるあるいは信頼性の低い参加者がFLに参加するのを防ぐ。
論文 参考訳(メタデータ) (2020-05-12T13:27:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。