Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss
- URL: http://arxiv.org/abs/2310.08206v3
- Date: Thu, 15 Aug 2024 13:38:05 GMT
- Title: Long-Tailed Classification Based on Coarse-Grained Leading Forest and Multi-Center Loss
- Authors: Jinye Yang, Ji Xu, Di Wu, Jianhang Tang, Shaobo Li, Guoyin Wang,
- Abstract summary: Long-tailed (LT) classification is an unavoidable and challenging problem in the real world.
We propose a novel long-tailed classification framework, aiming to build a multi-granularity classification model by means of invariant feature learning.
Our approach achieves state-of-the-art performance on both existing benchmarks ImageNet-GLT and MSCOCO-GLT.
- Score: 20.10399273585125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-tailed (LT) classification is an unavoidable and challenging problem in the real world. Most existing long-tailed classification methods focus only on solving the class-wise imbalance while ignoring the attribute-wise imbalance. The deviation of a classification model is caused by both class-wise and attribute-wise imbalance. Due to the fact that attributes are implicit in most datasets and the combination of attributes is complex, attribute-wise imbalance is more difficult to handle. For this purpose, we proposed a novel long-tailed classification framework, aiming to build a multi-granularity classification model by means of invariant feature learning. This method first unsupervisedly constructs Coarse-Grained forest (CLF) to better characterize the distribution of attributes within a class. Depending on the distribution of attributes, one can customize suitable sampling strategies to construct different imbalanced datasets. We then introduce multi-center loss (MCL) that aims to gradually eliminate confusing attributes during feature learning process. The proposed framework does not necessarily couple to a specific LT classification model structure and can be integrated with any existing LT method as an independent component. Extensive experiments show that our approach achieves state-of-the-art performance on both existing benchmarks ImageNet-GLT and MSCOCO-GLT and can improve the performance of existing LT methods. Our codes are available on GitHub: \url{https://github.com/jinyery/cognisance}
Related papers
- Long-Tailed Anomaly Detection with Learnable Class Names [64.79139468331807]
We introduce several datasets with different levels of class imbalance and metrics for performance evaluation.
We then propose a novel method, LTAD, to detect defects from multiple and long-tailed classes, without relying on dataset class names.
LTAD substantially outperforms the state-of-the-art methods for most forms of dataset imbalance.
arXiv Detail & Related papers (2024-03-29T15:26:44Z) - Subclass-balancing Contrastive Learning for Long-tailed Recognition [38.31221755013738]
Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications.
We propose a novel subclass-balancing contrastive learning'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes.
We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-06-28T05:08:43Z) - LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition [12.62835357920401]
We propose a unified framework for LTML, namely prompt tuning with class-specific embedding loss (LMPT)
Our method significantly surpasses the previous state-of-the-art methods and zero-shot CLIP in LTML.
arXiv Detail & Related papers (2023-05-08T08:14:46Z) - Learning in Imperfect Environment: Multi-Label Classification with
Long-Tailed Distribution and Partial Labels [53.68653940062605]
We introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC)
We find that most LT-MLC and PL-MLC approaches fail to solve the degradation-MLC.
We propose an end-to-end learning framework: textbfCOrrection $rightarrow$ textbfModificattextbfIon $rightarrow$ balantextbfCe.
arXiv Detail & Related papers (2023-04-20T20:05:08Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
This paper presents a balanced meta-causal learner (BMCL), which includes a balanced task generation module (BTG) and a meta-causal feature learning module (MCFL)
BMCL effectively identifies the class-invariant visual regions for classification and may serve as a general framework to improve the performance of the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-22T09:07:02Z) - Invariant Feature Learning for Generalized Long-Tailed Classification [63.0533733524078]
We introduce Generalized Long-Tailed classification (GLT) to jointly consider both kinds of imbalances.
We argue that most class-wise LT methods degenerate in our proposed two benchmarks: ImageNet-GLT and MSCOCO-GLT.
We propose an Invariant Feature Learning (IFL) method as the first strong baseline for GLT.
arXiv Detail & Related papers (2022-07-19T18:27:42Z) - Balanced Contrastive Learning for Long-Tailed Visual Recognition [32.789465918318925]
Real-world data typically follow a long-tailed distribution, where a few majority categories occupy most of the data.
In this paper, we focus on representation learning for imbalanced data.
We propose a novel loss for balanced contrastive learning (BCL)
arXiv Detail & Related papers (2022-07-19T03:48:59Z) - Adaptive Class Suppression Loss for Long-Tail Object Detection [49.7273558444966]
We devise a novel Adaptive Class Suppression Loss (ACSL) to improve the detection performance of tail categories.
Our ACSL achieves 5.18% and 5.2% improvements with ResNet50-FPN, and sets a new state of the art.
arXiv Detail & Related papers (2021-04-02T05:12:31Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.