Who Said That? Benchmarking Social Media AI Detection
- URL: http://arxiv.org/abs/2310.08240v1
- Date: Thu, 12 Oct 2023 11:35:24 GMT
- Title: Who Said That? Benchmarking Social Media AI Detection
- Authors: Wanyun Cui, Linqiu Zhang, Qianle Wang, Shuyang Cai
- Abstract summary: This paper introduces SAID (Social media AI Detection), a novel benchmark developed to assess AI-text detection models' capabilities in real social media platforms.
It incorporates real AI-generate text from popular social media platforms like Zhihu and Quora.
A notable finding of our study, based on the Zhihu dataset, reveals that annotators can distinguish between AI-generated and human-generated texts with an average accuracy rate of 96.5%.
- Score: 12.862865254507177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-generated text has proliferated across various online platforms, offering
both transformative prospects and posing significant risks related to
misinformation and manipulation. Addressing these challenges, this paper
introduces SAID (Social media AI Detection), a novel benchmark developed to
assess AI-text detection models' capabilities in real social media platforms.
It incorporates real AI-generate text from popular social media platforms like
Zhihu and Quora. Unlike existing benchmarks, SAID deals with content that
reflects the sophisticated strategies employed by real AI users on the Internet
which may evade detection or gain visibility, providing a more realistic and
challenging evaluation landscape. A notable finding of our study, based on the
Zhihu dataset, reveals that annotators can distinguish between AI-generated and
human-generated texts with an average accuracy rate of 96.5%. This finding
necessitates a re-evaluation of human capability in recognizing AI-generated
text in today's widely AI-influenced environment. Furthermore, we present a new
user-oriented AI-text detection challenge focusing on the practicality and
effectiveness of identifying AI-generated text based on user information and
multiple responses. The experimental results demonstrate that conducting
detection tasks on actual social media platforms proves to be more challenging
compared to traditional simulated AI-text detection, resulting in a decreased
accuracy. On the other hand, user-oriented AI-generated text detection
significantly improve the accuracy of detection.
Related papers
- SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.
It aims to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.
It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAI is a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI.
We show that our proposed framework achieves outstanding results in both the Turing Test and Authorship tasks.
arXiv Detail & Related papers (2024-07-12T15:44:56Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
Knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness.
State-of-the art approaches to AIGT detection include watermarking, statistical and stylistic analysis, and machine learning classification.
We aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios.
arXiv Detail & Related papers (2024-06-21T18:31:49Z) - Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection [8.149808049643344]
We propose a novel hybrid approach that combines TF-IDF techniques with advanced machine learning models.
Our approach achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2024-06-01T10:21:54Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
This study proposes a methodology to accurately distinguish AI-generated and human-written book reviews.
Our approach utilizes transfer learning, enabling the model to identify generated text across different topics.
The experimental results demonstrate that it is feasible to detect the original source of text, achieving an accuracy rate of 96.86%.
arXiv Detail & Related papers (2024-05-30T17:38:44Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
We introduce a semantic-aware watermarking algorithm that considers the characteristics of conditional text generation and the input context.
Experimental results demonstrate that our proposed method yields substantial improvements across various text generation models.
arXiv Detail & Related papers (2023-07-25T20:24:22Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.