論文の概要: Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for Traffic Flow Prediction
- arxiv url: http://arxiv.org/abs/2310.08328v3
- Date: Mon, 23 Dec 2024 14:36:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 22:39:31.177434
- Title: Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for Traffic Flow Prediction
- Title(参考訳): 交通流予測のための交通ハブ型時空間適応グラフ変換器
- Authors: Xiao Xu, Lei Zhang, Bailong Liu, Zhizhen Liang, Xuefei Zhang,
- Abstract要約: 本稿では交通流予測のためのトランスポート・ハブ対応時空間適応型グラフ変換器を提案する。
具体的には、動的空間依存を捉えるために、まず新しい空間自己認識モジュールを設計する。
また、トラフィックフローデータ中の動的時間パターンを検出するために、時間的自己アテンションモジュールを用いる。
- 参考スコア(独自算出の注目度): 9.99440375621286
- License:
- Abstract: As a core technology of Intelligent Transportation System (ITS), traffic flow prediction has a wide range of applications. Traffic flow data are spatial-temporal, which are not only correlated to spatial locations in road networks, but also vary with temporal time indices. Existing methods have solved the challenges in traffic flow prediction partly, focusing on modeling spatial-temporal dependencies effectively, while not all intrinsic properties of traffic flow data are utilized fully. Besides, there are very few attempts at incremental learning of spatial-temporal data mining, and few previous works can be easily transferred to the traffic flow prediction task. Motivated by the challenge of incremental learning methods for traffic flow prediction and the underutilization of intrinsic properties of road networks, we propose a Transport-Hub-aware Spatial-Temporal adaptive graph transFormer (H-STFormer) for traffic flow prediction. Specifically, we first design a novel spatial self-attention module to capture the dynamic spatial dependencies. Three graph masking matrices are integrated into spatial self-attentions to highlight both short- and long-term dependences. Additionally, we employ a temporal self-attention module to detect dynamic temporal patterns in the traffic flow data. Finally, we design an extra spatial-temporal knowledge distillation module for incremental learning of traffic flow prediction tasks. Through extensive experiments, we show the effectiveness of H-STFormer in normal and incremental traffic flow prediction tasks. The code is available at https://github.com/Fantasy-Shaw/H-STFormer.
- Abstract(参考訳): インテリジェントトランスポーテーションシステム(ITS)の中核技術として、交通流予測には幅広い応用がある。
交通流のデータは時空間的であり、道路網の空間的位置と相関するだけでなく、時間的時間指標も異なる。
既存の手法では,交通フローデータの本質的特性を十分に活用しつつも,空間的・時間的依存関係を効果的にモデル化することに集中して,交通フロー予測の課題を部分的に解決している。
さらに、時空間データマイニングの漸進的な学習の試みはほとんどなく、交通流予測タスクに容易に移行できる以前の研究はほとんどない。
交通流予測における漸進的学習手法の課題と道路網の内在特性の未利用により,交通流予測のためのトランスフォーマ (Transport-Hub-aware Space-Temporal Adaptive Graph Transformer, H-STFormer) を提案する。
具体的には、動的空間依存を捉えるために、まず新しい空間自己認識モジュールを設計する。
3つのグラフマスキング行列を空間的自己アテンションに統合し、短期的および長期的依存の両方を強調する。
さらに,トラフィックフローデータ中の動的時間パターンを検出するために,時間的自己アテンションモジュールを用いる。
最後に,交通流予測タスクの漸進的学習のための時空間知識蒸留モジュールを設計する。
実験により,H-STFormerの正常およびインクリメンタルトラフィックフロー予測における有効性を示す。
コードはhttps://github.com/Fantasy-Shaw/H-STFormerで入手できる。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
このような相関関係は普遍的であり、交通流において重要な役割を担っていると我々は主張する。
交通センサの局所的時空間コンテキストを構築するための新しい時空間学習フレームワークを提案する。
提案したSTNNモデルは、目に見えない任意のトラフィックネットワークに適用できる。
論文 参考訳(メタデータ) (2021-09-11T09:04:35Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
本稿では,交通速度予測に対処する空間時間グラフ畳み込みネットワークを提案する。
計算負荷を軽減するために、タッカーテンソル分解を行い、テンソル畳み込みを導出する。
2つの実世界の交通速度データセットの実験は、従来の交通予測方法よりも効果的な方法を示しています。
論文 参考訳(メタデータ) (2021-03-10T15:28:07Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。