Wigner transport in linear electromagnetic fields
- URL: http://arxiv.org/abs/2310.08376v2
- Date: Tue, 31 Oct 2023 11:47:07 GMT
- Title: Wigner transport in linear electromagnetic fields
- Authors: Clemens Etl, Mauro Ballicchia, Mihail Nedjalkov, Josef Weinbub
- Abstract summary: We present an equation analysis and show that a finite difference approach for solving the high-order derivatives allows for reformulation into a Fredholm integral equation.
We present two algorithms that evaluate averages of generic physical quantities or directly the Wigner function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Applying a Weyl-Stratonovich transform to the evolution equation of the
Wigner function in an electromagnetic field yields a multidimensional
gauge-invariant equation which is numerically very challenging to solve. In
this work, we apply simplifying assumptions for linear electromagnetic fields
and the evolution of an electron in a plane (two-dimensional transport), which
reduces the complexity and enables to gain first experiences with a
gauge-invariant Wigner equation. We present an equation analysis and show that
a finite difference approach for solving the high-order derivatives allows for
reformulation into a Fredholm integral equation. The resolvent expansion of the
latter contains consecutive integrals, which is favorable for Monte Carlo
solution approaches. To that end, we present two stochastic (Monte Carlo)
algorithms that evaluate averages of generic physical quantities or directly
the Wigner function. The algorithms give rise to a quantum particle model,
which interprets quantum transport in heuristic terms.
Related papers
- Exact solution of the master equation for interacting quantized fields at finite temperature decay [0.0]
We analyze the Markovian dynamics of a quantum system involving the interaction of two quantized fields at finite temperature decay.
We reformulate the Lindblad master equation into a von Neumann-like equation with an effective non-Hermitian Hamiltonian.
This method provides a framework to calculate the evolution of any initial state in a fully quantum regime.
arXiv Detail & Related papers (2024-10-11T00:21:54Z) - A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material.
We propose a solution via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties.
arXiv Detail & Related papers (2024-05-28T15:42:15Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A quantum algorithm for the linear Vlasov equation with collisions [0.0]
We present a quantum algorithm that simulates the linearized Vlasov equation with and without collisions.
We show that a quadratic speedup in system size is attainable.
arXiv Detail & Related papers (2023-03-06T19:19:30Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Gauge-Invariant Semi-Discrete Wigner Theory [0.0]
A gauge-invariant Wigner quantum mechanical theory is obtained by applying the Weyl-Stratonovich transform to the von Neumann equation for the density matrix.
We derive the evolution equation for the linear electromagnetic case and show that it significantly simplifies for a limit dictated by the long coherence length behavior.
arXiv Detail & Related papers (2022-08-19T08:19:09Z) - Algorithm for initializing a generalized fermionic Gaussian state on a
quantum computer [0.0]
We present explicit expressions for the central piece of a variational method developed by Shi et al.
We derive iterative analytical expressions for the evaluation of expectation values of products of fermionic creation and subroutine operators.
We present a simple gradient-descent-based algorithm that can be used as an optimization in combination with imaginary time evolution.
arXiv Detail & Related papers (2021-05-27T10:31:45Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.