The Integral Decimation Method for Quantum Dynamics and Statistical Mechanics
- URL: http://arxiv.org/abs/2506.11341v3
- Date: Thu, 24 Jul 2025 16:01:19 GMT
- Title: The Integral Decimation Method for Quantum Dynamics and Statistical Mechanics
- Authors: Ryan T. Grimm, Alexander J. Staat, Joel D. Eaves,
- Abstract summary: A direct numerical evaluation of an multidimensional integral incurs a computational cost that is exponential in the number of dimensions.<n>Here, we derive and implement a quantum algorithm to compress multidimensional integrand into a product of matrix-valued functions.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The solutions to many problems in the mathematical, computational, and physical sciences often involve multidimensional integrals. A direct numerical evaluation of the integral incurs a computational cost that is exponential in the number of dimensions, a phenomenon called the curse of dimensionality. The problem is so substantial that one usually employs sampling methods, like Monte Carlo, to avoid integration altogether. Here, we derive and implement a quantum algorithm to compress a multidimensional integrand into a product of matrix-valued functions - a spectral tensor train - changing the computational complexity of integration from exponential to polynomial. The algorithm compresses the integrand by applying a sequence of quantum gates to an unentangled quantum state, where each term corresponds to a body-ordered term in the potential. Because it allows for the systematic elimination of small contributions to the integral through decimation, we call the method integral decimation. The functions in the spectral basis are analytically differentiable and integrable, and in applications to the partition function, integral decimation numerically factorizes an interacting system into a product of noninteracting ones. We illustrate integral decimation by evaluating the absolute free energy and entropy of a chiral XY model as a continuous function of temperature. We also compute the nonequilibrium time-dependent reduced density matrix of a quantum chain with between two and forty levels, each coupled to colored noise. When other methods provide numerical solutions to these models, they quantitatively agree with integral decimation. When conventional methods become intractable, integral decimation can be a powerful alternative.
Related papers
- Finding local integrals of motion in quantum lattice models in the thermodynamic limit [0.0]
Local integrals of motion play a key role in understanding the long-time properties of closed macroscopic systems.<n>We show that finding LIOMs in translationally invariant lattice models or unitary quantum circuits can be reduced to a problem for which one may numerically find an exact solution in the thermodynamic limit.
arXiv Detail & Related papers (2025-05-09T08:49:23Z) - Dissipation-Induced Threshold on Integrability Footprints [1.0159681653887238]
We study how signatures of integrability fade as dissipation strength increases.<n>We estimate the critical dissipation threshold beyond which these clusters disappear.<n>Our results provide a quantitative picture of how noise gradually erases the footprints of integrability in open quantum systems.
arXiv Detail & Related papers (2025-04-14T14:16:37Z) - Tensor Cross Interpolation of Purities in Quantum Many-Body Systems [0.0]
In quantum many-body systems the exponential scaling of the Hilbert space with the number of degrees of freedom renders a complete state characterization.<n>Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed.<n>In this work, we demonstrate that the entanglement feature can be efficiently defining using only a amount of samples in the number of degrees of freedom.
arXiv Detail & Related papers (2025-03-21T15:33:00Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
This paper introduces an efficient tensor-vector product technique for the approximation of integral operators within physics-informed deep learning frameworks.
We demonstrate the applicability of this method to both Fredholm and Volterra integral operators.
We also propose a fast matrix-vector product algorithm for efficiently computing the fractional Caputo derivative.
arXiv Detail & Related papers (2024-09-03T13:43:58Z) - Connection between coherent states and some integrals and integral representations [0.0]
The paper presents an interesting mathematical feedback between the formalism of coherent states and the field of integrals and integral representations involving special functions.
This materializes through an easy and fast method to calculate integrals or integral representations of different functions, expressible by means of Meijer's G-, as well as hypergeometric generalized functions.
arXiv Detail & Related papers (2024-08-20T11:31:15Z) - Spectral chaos bounds from scaling theory of maximally efficient quantum-dynamical scrambling [44.99833362998488]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.<n>We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.<n>We establish that scaling predictions are matched by a privileged process and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all time scales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Computing Anti-Derivatives using Deep Neural Networks [3.42658286826597]
This paper presents a novel algorithm to obtain the closed-form anti-derivative of a function using Deep Neural Network architecture.
We claim that using a single method for all integrals, our algorithm can approximate anti-derivatives to any required accuracy.
This paper also shows the applications of our method to get the closed-form expressions of elliptic integrals, Fermi-Dirac integrals, and cumulative distribution functions.
arXiv Detail & Related papers (2022-09-19T15:16:47Z) - Integral Transforms in a Physics-Informed (Quantum) Neural Network
setting: Applications & Use-Cases [1.7403133838762446]
In many computational problems in engineering and science, function or model differentiation is essential, but also integration is needed.
In this work, we propose to augment the paradigm of Physics-Informed Neural Networks with automatic integration.
arXiv Detail & Related papers (2022-06-28T17:51:32Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Long-range level correlations in quantum systems with finite Hilbert
space dimension [0.0]
We study the spectral statistics of quantum systems with finite Hilbert spaces.
We derive a theorem showing that eigenlevels in such systems cannot be globally uncorrelated.
arXiv Detail & Related papers (2020-10-13T15:49:15Z) - Entanglement revivals as a probe of scrambling in finite quantum systems [0.0]
We show that for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size.
While for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size, upon breaking integrability a much faster decay is observed, signalling strong scrambling.
arXiv Detail & Related papers (2020-04-18T21:30:30Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.