論文の概要: Visual Self-supervised Learning Scheme for Dense Prediction Tasks on X-ray Images
- arxiv url: http://arxiv.org/abs/2310.08421v4
- Date: Mon, 04 Nov 2024 11:06:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:43:38.691291
- Title: Visual Self-supervised Learning Scheme for Dense Prediction Tasks on X-ray Images
- Title(参考訳): X線画像における難読度予測のための視覚的自己教師型学習手法
- Authors: Shervin Halat, Mohammad Rahmati, Ehsan Nazerfard,
- Abstract要約: 自己教師付き学習(SSL)は自然言語処理(NLP)においてかなりの進歩をもたらした
しかし、既存のビジュアルSSLモデルにコントラスト学習を組み込むことは、しばしば監督対象を超越する、かなりの進歩をもたらした。
ここでは、セキュリティ検査X線画像を用いた密集予測タスクに着目し、提案モデルであるセグメントローカライゼーション(SegLoc)を評価する。
インスタンスローカライゼーション(InsLoc)モデルに基づいて、SegLocはコントラスト学習における重要な課題の1つ、すなわち、クエリ埋め込みの偽陰性ペアに対処する。
- 参考スコア(独自算出の注目度): 3.782392436834913
- License:
- Abstract: Recently, significant advancements in artificial intelligence have been attributed to the integration of self-supervised learning (SSL) scheme. While SSL has shown impressive achievements in natural language processing (NLP), its progress in computer vision has comparatively lagged behind. However, the incorporation of contrastive learning into existing visual SSL models has led to considerable progress, often surpassing supervised counterparts. Nonetheless, these improvements have been mostly limited to classification tasks. Moreover, few studies have evaluated visual SSL models in real-world scenarios, as most have focused on datasets with class-wise portrait images, notably ImageNet. Here, we focus on dense prediction tasks using security inspection x-ray images to evaluate our proposed model, Segment Localization (SegLoc). Based upon the Instance Localization (InsLoc) model, SegLoc addresses one of the key challenges of contrastive learning, i.e., false negative pairs of query embeddings. Our pre-training dataset is synthesized by cutting, transforming, and pasting labeled segments from an existing labeled dataset (PIDray) as foregrounds onto instances from an unlabeled dataset (SIXray) as backgrounds. Furthermore, we fully leverage the labeled data by incorporating the concept, one queue per class, into the MoCo-v2 memory bank, thereby avoiding false negative pairs. In our experiments, SegLoc outperformed random initialization by 3% to 6% while underperformed supervised initialization, in terms of AR and AP metrics across different IoU values over 20 to 30 pre-training epochs.
- Abstract(参考訳): 近年、人工知能の大幅な進歩は、自己教師付き学習(SSL)スキームの統合によるものである。
SSLは自然言語処理(NLP)において顕著な成果を上げているが、コンピュータビジョンの進歩は比較的遅れを取っている。
しかし、既存のビジュアルSSLモデルにコントラスト学習を組み込むことは、しばしば監督対象を超越する、かなりの進歩をもたらした。
しかしながら、これらの改善は主に分類タスクに限られている。
さらに、視覚的なSSLモデルを現実世界のシナリオで評価する研究はほとんどない。
本稿では,セキュリティ検査用X線画像を用いた密集予測タスクに着目し,提案モデルであるセグメントローカライゼーション(SegLoc)を評価する。
インスタンスローカライゼーション(InsLoc)モデルに基づいて、SegLocはコントラスト学習における重要な課題の1つ、すなわち、クエリ埋め込みの偽陰性ペアに対処する。
我々の事前トレーニングデータセットは、既存のラベル付きデータセット(PIDray)からのラベル付きセグメントを、バックグラウンドとしてラベルなしデータセット(SIXray)のインスタンスにフォアグラウンドとして、カット、変換、ペーストすることで合成される。
さらに、クラス毎に1つのキューという概念をMoCo-v2メモリバンクに組み込むことで、ラベル付きデータを完全に活用する。
我々の実験では、SegLocは、20から30回の事前学習エポックで異なるIoU値のARおよびAP測定値において、教師付き初期化を過小評価しながら、ランダム初期化を3%から6%上回った。
関連論文リスト
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
リモートセンシング画像分類のための有望なアプローチとして,自己教師付き学習が登場している。
そこで本研究では,14の下流データセットにまたがる自己教師型事前学習戦略について検討し,その効果を評価する。
論文 参考訳(メタデータ) (2023-07-04T10:57:52Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST)は、疑似ラベルと生画像という2つの異なる、補完的な監督源を活用する新しいアプローチである。
MUSTはCLIPを大きなマージンで改善し、教師なしと教師なしの分類のパフォーマンスギャップを狭める。
論文 参考訳(メタデータ) (2022-06-07T02:03:06Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - UniVIP: A Unified Framework for Self-Supervised Visual Pre-training [50.87603616476038]
単一中心オブジェクトまたは非調和データセット上で,汎用的な視覚表現を学習するための,新しい自己教師型フレームワークを提案する。
大規模実験により、非高調波COCOで事前訓練されたUniVIPは、最先端の転送性能を実現することが示された。
また、ImageNetのような単一中心オブジェクトのデータセットを利用でき、線形探索において同じ事前学習エポックでBYOLを2.5%上回る。
論文 参考訳(メタデータ) (2022-03-14T10:04:04Z) - Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation [23.616336382437275]
医用画像分割のための階層型自己監督学習(HSSL)を提案する。
まず、いくつかの医学的課題からデータセットを収集し、自己教師付きでネットワークを事前訓練し、最後にラベル付きデータに微調整します。
スクラッチから学習するのに比べ、新しい手法は様々なタスクにおいてより良いパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2021-07-10T18:17:57Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
我々は,大規模なラベル付きデータからRSIシーン分類のための高性能事前学習モデルを得るために,新たな自己教師付き学習(SSL)機構を導入する。
一般的な3つのRSIシーン分類データセットの実験により、この新たな学習パラダイムは、従来の支配的なImageNet事前学習モデルよりも優れていることが示された。
我々の研究から得られた知見は、リモートセンシングコミュニティにおけるSSLの発展を促進するのに役立ちます。
論文 参考訳(メタデータ) (2020-10-02T09:27:19Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。