論文の概要: Fed-Safe: Securing Federated Learning in Healthcare Against Adversarial
Attacks
- arxiv url: http://arxiv.org/abs/2310.08681v1
- Date: Thu, 12 Oct 2023 19:33:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 15:42:53.169954
- Title: Fed-Safe: Securing Federated Learning in Healthcare Against Adversarial
Attacks
- Title(参考訳): fed-safe: 医療におけるフェデレート学習の保護
- Authors: Erfan Darzi, Nanna M. Sijtsema, P.M.A van Ooijen
- Abstract要約: 本稿では,医用画像解析におけるフェデレーション学習アプリケーションのセキュリティ面について検討する。
フェデレートされた設定におけるプライバシー保証を基礎として分散ノイズを組み込むことにより、逆向きに堅牢なモデルの開発が可能となることを示す。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the security aspects of federated learning applications
in medical image analysis. Current robustness-oriented methods like adversarial
training, secure aggregation, and homomorphic encryption often risk privacy
compromises. The central aim is to defend the network against potential privacy
breaches while maintaining model robustness against adversarial manipulations.
We show that incorporating distributed noise, grounded in the privacy
guarantees in federated settings, enables the development of a adversarially
robust model that also meets federated privacy standards. We conducted
comprehensive evaluations across diverse attack scenarios, parameters, and use
cases in cancer imaging, concentrating on pathology, meningioma, and glioma.
The results reveal that the incorporation of distributed noise allows for the
attainment of security levels comparable to those of conventional adversarial
training while requiring fewer retraining samples to establish a robust model.
- Abstract(参考訳): 本稿では,医療画像解析における連合学習アプリケーションのセキュリティ面について検討する。
現在の堅牢性指向の手法である、敵のトレーニング、セキュアアグリゲーション、同型暗号化は、しばしばプライバシー侵害のリスクを負う。
中心的な目的は、敵の操作に対するモデル堅牢性を維持しながら、潜在的なプライバシー侵害からネットワークを守ることである。
フェデレートされた設定におけるプライバシー保証を基礎とした分散ノイズの導入により、フェデレーションされたプライバシ標準にも適合する、対向的に堅牢なモデルの開発が可能になることを示す。
病理,髄膜腫,グリオーマを中心に,がん画像における多様な攻撃シナリオ,パラメータ,使用事例を総合的に評価した。
その結果,分散ノイズが組み込まれれば,従来と同等のセキュリティレベルが達成でき,ロバストなモデルを確立するためにはサンプルの再トレーニングを少なくできることがわかった。
関連論文リスト
- Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data [12.30620268528346]
我々は、AAFV(Abstention-Aware Federated Voting)と呼ばれる新しいフレームワークを提案する。
AAFVは、データのプライバシを同時に保護しながら、共同で機密的に異質なローカルモデルをトレーニングすることができる。
特に,提案手法では,不均一な局所モデルから高信頼投票を選択するために,しきい値に基づく棄権方式を採用している。
論文 参考訳(メタデータ) (2024-06-15T08:43:40Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
医療画像や自律運転などの安全クリティカルな応用においては、高い敵の堅牢性を維持し、潜在的敵の攻撃から保護することが不可欠である。
敵対的に訓練されたモデルに固有の不確実性に関して、注目すべき知識ギャップが残っている。
本研究では,共形予測(CP)の性能を標準対向攻撃の文脈で検証することにより,ディープラーニングモデルの不確実性について検討する。
論文 参考訳(メタデータ) (2024-05-14T18:05:19Z) - Privacy Threats in Stable Diffusion Models [0.7366405857677227]
本稿では,安定拡散コンピュータビジョンモデルを対象としたMIA(Message Inference attack)の新たなアプローチを提案する。
MIAは、モデルのトレーニングデータに関する機密情報を抽出することを目的としており、重要なプライバシー上の懸念を呈している。
被害者モデルに繰り返し問い合わせるだけでよいブラックボックスMIAを考案する。
論文 参考訳(メタデータ) (2023-11-15T20:31:40Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
医療におけるディープラーニングアプリケーションの普及は、さまざまな機関にデータ収集を求める。
プライバシー保護メカニズムは、データが自然に敏感である医療画像解析において最重要である。
本研究は,プライバシ保護技術である差分プライバシを,医用画像分類のための統合学習フレームワークに統合することの必要性に対処する。
論文 参考訳(メタデータ) (2023-06-30T16:48:58Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Defending Medical Image Diagnostics against Privacy Attacks using
Generative Methods [10.504951891644474]
生成敵対ネットワーク(GAN)を用いたプライバシー防御プロトコルの開発と評価を行います。
本研究では, 糖尿病性網膜症に用いる網膜診断AIについて, 個人情報が漏洩するリスクがあることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:02:57Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
メンバーシップ推論攻撃に対する事前の取り組みは、プライバシーリスクを著しく過小評価する可能性があることを示す。
まず、既存の非ニューラルネットワークベースの推論攻撃を改善することで、メンバーシップ推論のプライバシリスクをベンチマークする。
次に、プライバシリスクスコアと呼ばれる新しい指標を定式化し、導出することで、詳細なプライバシ分析のための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-03-24T00:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。