PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on Neural Implicit Surface
- URL: http://arxiv.org/abs/2310.08755v2
- Date: Fri, 15 Mar 2024 23:04:33 GMT
- Title: PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on Neural Implicit Surface
- Authors: Sangwon Lim, Karim El-Basyouny, Yee Hong Yang,
- Abstract summary: We propose a new ray-based upsampling approach with an arbitrary rate, where a depth prediction is made for each query ray and its corresponding patch.
Our novel method simulates the sphere-tracing ray marching algorithm on the neural implicit surface defined with an unsigned distance function (UDF)
The rule-based mid-point query sampling method generates more evenly distributed points without requiring an end-to-end model trained using a nearest-neighbor-based reconstruction loss function.
- Score: 5.78575346449322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent advancements in deep-learning point cloud upsampling methods have improved the input to intelligent transportation systems, they still suffer from issues of domain dependency between synthetic and real-scanned point clouds. This paper addresses the above issues by proposing a new ray-based upsampling approach with an arbitrary rate, where a depth prediction is made for each query ray and its corresponding patch. Our novel method simulates the sphere-tracing ray marching algorithm on the neural implicit surface defined with an unsigned distance function (UDF) to achieve more precise and stable ray-depth predictions by training a point-transformer-based network. The rule-based mid-point query sampling method generates more evenly distributed points without requiring an end-to-end model trained using a nearest-neighbor-based reconstruction loss function, which may be biased towards the training dataset. Self-supervised learning becomes possible with accurate ground truths within the input point cloud. The results demonstrate the method's versatility across domains and training scenarios with limited computational resources and training data. Comprehensive analyses of synthetic and real-scanned applications provide empirical evidence for the significance of the upsampling task across the computer vision and graphics domains to real-world applications of ITS.
Related papers
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
Iterative methods such as iterative closest point (ICP) for point cloud registration often suffer from bad local optimality.
We propose learning to form a convex landscape around each ground truth.
arXiv Detail & Related papers (2024-11-16T01:13:04Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
Novel view synthesis has recently been revolutionized by learning neural radiance fields directly from sparse observations.
rendering images with this new paradigm is slow due to the fact that an accurate quadrature of the volume rendering equation requires a large number of samples for each ray.
We propose a novel dual-network architecture that takes an direction by learning how to best reduce the number of required sample points.
arXiv Detail & Related papers (2022-07-21T05:59:13Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - Quasi-Balanced Self-Training on Noise-Aware Synthesis of Object Point
Clouds for Closing Domain Gap [34.590531549797355]
We propose an integrated scheme consisting of physically realistic synthesis of object point clouds via rendering stereo images via projection of speckle patterns onto CAD models.
Experiment results can verify the effectiveness of our method as well as both of its modules for unsupervised domain adaptation on point cloud classification.
arXiv Detail & Related papers (2022-03-08T03:44:49Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.