Mitigating Bias for Question Answering Models by Tracking Bias Influence
- URL: http://arxiv.org/abs/2310.08795v2
- Date: Mon, 17 Jun 2024 09:06:24 GMT
- Title: Mitigating Bias for Question Answering Models by Tracking Bias Influence
- Authors: Mingyu Derek Ma, Jiun-Yu Kao, Arpit Gupta, Yu-Hsiang Lin, Wenbo Zhao, Tagyoung Chung, Wei Wang, Kai-Wei Chang, Nanyun Peng,
- Abstract summary: We propose BMBI, an approach to mitigate the bias of multiple-choice QA models.
Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance.
We show that our method could be applied to multiple QA formulations across multiple bias categories.
- Score: 84.66462028537475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.
Related papers
- Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
We study the "dataset bias" problem from a statistical standpoint.
We identify the main cause of the problem as the strong correlation between a class attribute u and a non-class attribute b.
We propose to mitigate dataset bias via either weighting the objective of each sample n by frac1p(u_n|b_n) or sampling that sample with a weight proportional to frac1p(u_n|b_n).
arXiv Detail & Related papers (2024-02-05T22:58:06Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Generative Bias for Robust Visual Question Answering [74.42555378660653]
We propose a generative method to train the bias model directly from the target model, called GenB.
In particular, GenB employs a generative network to learn the bias in the target model through a combination of the adversarial objective and knowledge distillation.
We show through extensive experiments the effects of our method on various VQA bias datasets including VQA-CP2, VQA-CP1, GQA-OOD, and VQA-CE.
arXiv Detail & Related papers (2022-08-01T08:58:02Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
We introduce SAME, a novel bias score for semantic bias in embeddings.
We show that SAME is capable of measuring semantic bias and identify potential causes for social bias in downstream tasks.
arXiv Detail & Related papers (2022-03-28T09:28:13Z) - BBQ: A Hand-Built Bias Benchmark for Question Answering [25.108222728383236]
It is well documented that NLP models learn social biases present in the world, but little work has been done to show how these biases manifest in actual model outputs for applied tasks like question answering (QA)
We introduce the Bias Benchmark for QA (BBQ), a dataset consisting of question-sets constructed by the authors that highlight textitattested social biases against people belonging to protected classes along nine different social dimensions relevant for U.S. English-speaking contexts.
We find that models strongly rely on stereotypes when the context is ambiguous, meaning that the model's outputs consistently reproduce harmful biases in this setting
arXiv Detail & Related papers (2021-10-15T16:43:46Z) - Greedy Gradient Ensemble for Robust Visual Question Answering [163.65789778416172]
We stress the language bias in Visual Question Answering (VQA) that comes from two aspects, i.e., distribution bias and shortcut bias.
We propose a new de-bias framework, Greedy Gradient Ensemble (GGE), which combines multiple biased models for unbiased base model learning.
GGE forces the biased models to over-fit the biased data distribution in priority, thus makes the base model pay more attention to examples that are hard to solve by biased models.
arXiv Detail & Related papers (2021-07-27T08:02:49Z) - UnQovering Stereotyping Biases via Underspecified Questions [68.81749777034409]
We present UNQOVER, a framework to probe and quantify biases through underspecified questions.
We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors.
We use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion.
arXiv Detail & Related papers (2020-10-06T01:49:52Z) - What Gives the Answer Away? Question Answering Bias Analysis on Video QA
Datasets [40.64071905569975]
Question answering biases in video QA datasets can mislead multimodal model to overfit to QA artifacts.
Our study shows biases can come from annotators and type of questions.
We also show empirically that using annotator-non-overlapping train-test splits can reduce QA biases for video QA datasets.
arXiv Detail & Related papers (2020-07-07T17:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.