Incremental Object Detection with CLIP
- URL: http://arxiv.org/abs/2310.08815v3
- Date: Tue, 9 Jul 2024 06:55:00 GMT
- Title: Incremental Object Detection with CLIP
- Authors: Ziyue Huang, Yupeng He, Qingjie Liu, Yunhong Wang,
- Abstract summary: We propose a visual-language model such as CLIP to generate text feature embeddings for different class sets.
We then employ super-classes to replace the unavailable novel classes in the early learning stage to simulate the incremental scenario.
We incorporate the finely recognized detection boxes as pseudo-annotations into the training process, thereby further improving the detection performance.
- Score: 36.478530086163744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to the incremental classification task, the incremental detection task is characterized by the presence of data ambiguity, as an image may have differently labeled bounding boxes across multiple continuous learning stages. This phenomenon often impairs the model's ability to effectively learn new classes. However, existing research has paid less attention to the forward compatibility of the model, which limits its suitability for incremental learning. To overcome this obstacle, we propose leveraging a visual-language model such as CLIP to generate text feature embeddings for different class sets, which enhances the feature space globally. We then employ super-classes to replace the unavailable novel classes in the early learning stage to simulate the incremental scenario. Finally, we utilize the CLIP image encoder to accurately identify potential objects. We incorporate the finely recognized detection boxes as pseudo-annotations into the training process, thereby further improving the detection performance. We evaluate our approach on various incremental learning settings using the PASCAL VOC 2007 dataset, and our approach outperforms state-of-the-art methods, particularly for recognizing the new classes.
Related papers
- COOLer: Class-Incremental Learning for Appearance-Based Multiple Object
Tracking [32.47215340215641]
This paper extends the scope of continual learning research to class-incremental learning for multiple object tracking (MOT)
Previous solutions for continual learning of object detectors do not address the data association stage of appearance-based trackers.
We introduce COOLer, a COntrastive- and cOntinual-Learning-based tracker, which incrementally learns to track new categories while preserving past knowledge.
arXiv Detail & Related papers (2023-10-04T17:49:48Z) - Cross-Class Feature Augmentation for Class Incremental Learning [45.91253737682168]
We propose a novel class incremental learning approach by incorporating a feature augmentation technique motivated by adversarial attacks.
The proposed approach has a unique perspective to utilize the previous knowledge in class incremental learning since it augments features of arbitrary target classes.
Our method consistently outperforms existing class incremental learning methods by significant margins in various scenarios.
arXiv Detail & Related papers (2023-04-04T15:48:09Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Towards Generalized and Incremental Few-Shot Object Detection [9.033533653482529]
A novel Incremental Few-Shot Object Detection (iFSOD) method is proposed to enable the effective continual learning from few-shot samples.
Specifically, a Double-Branch Framework (DBF) is proposed to decouple the feature representation of base and novel (few-shot) class.
We conduct experiments on both Pascal VOC and MS-COCO, which demonstrate that our method can effectively solve the problem of incremental few-shot detection.
arXiv Detail & Related papers (2021-09-23T12:38:09Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
We introduce a class attention mechanism that sequentially attends to objects in the image and extracts their relevant features.
The proposed technique is trained on point-level annotations and uses a novel loss function that disentangles class-dependent and class-agnostic aspects of the model.
We present our results on a variety of object-counting/detection datasets, including FSOD and MS COCO.
arXiv Detail & Related papers (2020-07-03T18:23:39Z) - Continual Representation Learning for Biometric Identification [47.15075374158398]
We propose a new continual learning (CL) setting, namely continual representation learning'', which focuses on learning better representation in a continuous way.
We demonstrate that existing CL methods can improve the representation in the new setting, and our method achieves better results than the competitors.
arXiv Detail & Related papers (2020-06-08T10:18:06Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.