論文の概要: DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control
- arxiv url: http://arxiv.org/abs/2310.09053v1
- Date: Fri, 13 Oct 2023 12:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 13:10:24.734116
- Title: DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control
- Title(参考訳): datt:クワッドローター制御のための深い適応軌道追跡
- Authors: Kevin Huang, Rwik Rana, Alexander Spitzer, Guanya Shi, Byron Boots
- Abstract要約: Deep Adaptive Trajectory Tracking (DATT)は、学習に基づくアプローチであり、現実世界の大きな乱れの存在下で、任意の、潜在的に実現不可能な軌跡を正確に追跡することができる。
DATTは、非定常風場における可溶性および非実用性の両方の軌道に対して、競争適応性非線形およびモデル予測コントローラを著しく上回っている。
適応非線形モデル予測制御ベースラインの1/4未満である3.2ms未満の推論時間で、効率的にオンラインで実行することができる。
- 参考スコア(独自算出の注目度): 62.24301794794304
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Precise arbitrary trajectory tracking for quadrotors is challenging due to
unknown nonlinear dynamics, trajectory infeasibility, and actuation limits. To
tackle these challenges, we present Deep Adaptive Trajectory Tracking (DATT), a
learning-based approach that can precisely track arbitrary, potentially
infeasible trajectories in the presence of large disturbances in the real
world. DATT builds on a novel feedforward-feedback-adaptive control structure
trained in simulation using reinforcement learning. When deployed on real
hardware, DATT is augmented with a disturbance estimator using L1 adaptive
control in closed-loop, without any fine-tuning. DATT significantly outperforms
competitive adaptive nonlinear and model predictive controllers for both
feasible smooth and infeasible trajectories in unsteady wind fields, including
challenging scenarios where baselines completely fail. Moreover, DATT can
efficiently run online with an inference time less than 3.2 ms, less than 1/4
of the adaptive nonlinear model predictive control baseline
- Abstract(参考訳): 四元数に対する精密な任意の軌道追跡は、未知の非線形ダイナミクス、軌道不実現性、アクティベーション限界のために困難である。
これらの課題に対処するために,実世界の大きな乱れの存在下で,任意の,潜在的に不可能な軌跡を正確に追跡する学習ベースのアプローチであるDeep Adaptive Trajectory Tracking (DATT)を提案する。
DATTは、強化学習を用いたシミュレーションで訓練された新しいフィードフォワードフィードバック適応制御構造に基づいている。
実際のハードウェアにデプロイする際、DATTはクローズドループにおけるL1適応制御を用いた外乱推定器で拡張される。
DATTは、ベースラインが完全に故障する挑戦的なシナリオを含む非定常風場において、実行不可能なスムーズな軌道と不可能な軌道の両方に対して、競争適応性のある非線形およびモデル予測コントローラを著しく上回っている。
さらに、dattは、適応非線形モデル予測制御ベースラインの1/4未満の3.2ms未満の推論時間で効率的にオンライン実行することができる。
関連論文リスト
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
本稿では,DJI行列100のための非線形モデル予測制御(NMPC)フレームワークを提案する。
このフレームワークは様々なトラジェクトリタイプをサポートし、厳密な操作の精度を制御するためにペナルティベースのコスト関数を採用している。
論文 参考訳(メタデータ) (2024-10-03T17:50:19Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
最先端のロボットアプリケーションは、歩行、揚力、操作などの複雑なタスクを達成するために、閉ループ力制御を備えた連続弾性アクチュエータ(SEAs)を使用する。
モデルフリーPID制御法はSEAの非線形性により不安定になりやすい。
深層強化学習は連続制御タスクに有効なモデルレス手法であることが証明されている。
論文 参考訳(メタデータ) (2023-04-11T00:51:47Z) - Control-oriented meta-learning [25.316358215670274]
我々は、ニューラルネットワークを用いたデータ駆動モデリングを用いて、過去のデータからオフラインで学習し、非線形特徴の内部パラメトリックモデルによる適応制御を行う。
ベースラーナーとして閉ループ追従シミュレーションを用いた適応制御器をメタ学習し,メタ対象として平均追従誤差を推定する。
論文 参考訳(メタデータ) (2022-04-14T03:02:27Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
DRLは、元の非線形力学を直接操作する固定翼UAVの姿勢制御をうまく学べることを示す。
我々は,UAVで学習したコントローラを飛行試験で展開し,最先端のArduPlane比例積分微分(PID)姿勢制御と同等の性能を示す。
論文 参考訳(メタデータ) (2021-11-07T19:07:46Z) - Learning Adaptive Control for SE(3) Hamiltonian Dynamics [15.26733033527393]
本稿では, 地上, 空中, 水中などの剛体システムに対する適応的幾何制御法を開発した。
我々は、状態制御軌道データから学習したニューラル常微分方程式ネットワークを用いて、系の力学のハミルトンモデルを学ぶ。
第2段階では、エネルギーベースの観点から外乱補償を施した軌道追従制御器を設計する。
論文 参考訳(メタデータ) (2021-09-21T05:54:28Z) - Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems [29.579737941918022]
我々は過去のデータからオフラインで学習し、非線形特徴の内部パラメトリックモデルによる適応制御を行う。
ベースランナーとして閉ループ追跡シミュレーション、メタオブジェクトとして平均トラッキングエラーで適応コントローラをメタ学習します。
非線形平面ロータークラフトを用いて,適応型コントローラが回帰型メタラーニングで学習した他のコントローラよりも優れていることを実証する。
論文 参考訳(メタデータ) (2021-03-07T23:49:59Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
部分的に観測可能な線形力学系におけるシステム同定と適応制御の問題について検討する。
開ループ系と閉ループ系の両方において有限時間保証付きの最初のモデル推定法を提案する。
AdaptOnは、未知の部分観測可能な線形力学系の適応制御において、$textpolylogleft(Tright)$ regretを達成する最初のアルゴリズムであることを示す。
論文 参考訳(メタデータ) (2020-03-25T06:00:33Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。