論文の概要: ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
- arxiv url: http://arxiv.org/abs/2310.09234v5
- Date: Wed, 26 Jun 2024 08:59:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 19:44:08.167680
- Title: ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
- Title(参考訳): ClickPrompt: CTRモデルはCTR予測に言語モデルを適用するための強力なプロンプトジェネレータである
- Authors: Jianghao Lin, Bo Chen, Hangyu Wang, Yunjia Xi, Yanru Qu, Xinyi Dai, Kangning Zhang, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract要約: クリックスルー率(CTR)の予測は、様々なインターネットアプリケーションにとってますます不可欠になっている。
従来のCTRモデルは、マルチフィールド分類データをワンホット符号化によりID特徴に変換し、特徴間の協調信号を抽出する。
我々は、CTRモデルを組み込んで対話対応ソフトプロンプトを生成する、新しいモデル非依存フレームワーク(ClickPrompt)を提案する。
- 参考スコア(独自算出の注目度): 45.15127775876369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.
- Abstract(参考訳): クリックスルー率(CTR)の予測は、様々なインターネットアプリケーションにとってますます不可欠になっている。
従来のCTRモデルは、マルチフィールド分類データをワンホット符号化によりID特徴に変換し、特徴間の協調信号を抽出する。
このようなパラダイムは意味情報損失の問題に悩まされる。
もうひとつの研究は、入力データをハードプロンプトテンプレートを通じてテキスト文に変換することで、CTR予測のための事前学習言語モデル(PLM)の可能性を探ることである。
セマンティック信号は保存されているが、一般に、巨大なモデルサイズによってもたらされる受け入れがたい推論オーバーヘッドを言うまでもなく、コラボレーティブな情報(例えば、機能インタラクション、純粋なID機能)をキャプチャすることができない。
本稿では,CTR推定における意味的知識と協調的知識の両方をモデル化することを目的とした。
両世界から恩恵を受け,そのギャップを埋めるために,新たなモデルに依存しないフレームワーク(ClickPrompt)を提案する。
本研究では,PA-MLMプリトレーニングタスクを設計し,PLMは言語コンテキストに基づいてマスク付きトークンを復元し,CTRモデルによって生成されたソフトプロンプトを復元する。
IDとテキスト機能からの協調的および意味的な知識は、プロンプトインターフェースを介して明示的に整列され、相互作用される。
そして、優れた性能を得るためにCTRモデルをPLMで調整するか、あるいは推論効率のためにPLMなしでCTRモデルを調整できる。
4つの実世界のデータセットの実験は、既存のベースラインと比較してClickPromptの有効性を検証する。
関連論文リスト
- ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - FLIP: Towards Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
本稿では,クリックスルー率(CTR)予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
具体的には、1つのモダリティ(トークンや特徴)のマスキングされたデータは、他のモダリティの助けを借りて回復し、特徴レベルの相互作用とアライメントを確立する必要がある。
3つの実世界のデータセットの実験により、FLIPはSOTAベースラインより優れており、様々なIDベースのモデルやPLMと高い互換性を持つことが示された。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Structural Self-Supervised Objectives for Transformers [3.018656336329545]
この論文は、教師なし生データを用いて自然言語モデルの事前学習を改善することに焦点を当てている。
第一部では,BERT の Masked Language Modeling (MLM) に対する3つの事前学習目標について紹介する。
第2部では、下流アプリケーションと構造的に整合する自己教師付き事前学習タスクを提案する。
論文 参考訳(メタデータ) (2023-09-15T09:30:45Z) - BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model
with Non-textual Features for CTR Prediction [12.850529317775198]
本稿では,非テキスト特徴とテキスト特徴の相互作用の恩恵を受けることができるUni-Attention機構を備えた新しいフレームワークBERT4CTRを提案する。
BERT4CTRは、マルチモーダル入力を処理する最先端フレームワークを大幅に上回り、Click-Through-Rate (CTR)予測に適用できる。
論文 参考訳(メタデータ) (2023-08-17T08:25:54Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
本稿では,多分野分類データに特徴的破損と回復を適用したMAP(Model-Agnostic Pretraining)フレームワークを提案する。
マスク付き特徴予測(RFD)と代替特徴検出(RFD)の2つの実用的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-08-03T12:55:55Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
対話型モデルと非対話型モデルの利点を活用する新しいフレームワークを提案する。
非対話型アーキテクチャ上でモデルを構築できる半対話型機構を導入するが、各文書を関連付けられた多言語クエリと共にエンコードする。
本手法は,計算効率を維持しながら検索精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-03T03:03:19Z) - PTR: Prompt Tuning with Rules for Text Classification [64.1655047016891]
微調整された事前学習言語モデル(PLM)は、ほぼすべてのNLPタスクで素晴らしいパフォーマンスを実現している。
我々は,多クラステキスト分類のためのルール(PTR)による即時チューニングを提案する。
PTRは、各クラスの事前知識を即時チューニングにエンコードすることができる。
論文 参考訳(メタデータ) (2021-05-24T13:24:02Z) - Conversational Question Reformulation via Sequence-to-Sequence
Architectures and Pretrained Language Models [56.268862325167575]
本稿では、列列列構造と事前学習言語モデル(PLM)を用いた会話型質問修正(CQR)の実証的研究について述べる。
我々はPLMを利用して、CQRタスクの目的である最大推定におけるトークン・トークン・トークン・トークンの独立性の強い仮定に対処する。
我々は、最近導入されたCANARDデータセットの微調整PLMをドメイン内タスクとして評価し、TREC 2019 CAsT Trackのデータからドメイン外タスクとしてモデルを検証する。
論文 参考訳(メタデータ) (2020-04-04T11:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。