GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics
- URL: http://arxiv.org/abs/2310.09254v4
- Date: Thu, 07 Nov 2024 17:14:38 GMT
- Title: GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics
- Authors: Dominik Klein, Théo Uscidda, Fabian Theis, Marco Cuturi,
- Abstract summary: Single-cell genomics has advanced our understanding of cellular behavior, catalyzing innovations in treatments and precision medicine.
Traditional discrete solvers are hampered by scalability, privacy, and out-of-sample estimation issues.
We present a neural network-based solvers, known as neural OT solvers, that parameterize OT maps.
We demonstrate its versatility and robustness through applications in cell development studies, cellular drug response modeling, and cross-modality cell translation.
- Score: 20.01834405021846
- License:
- Abstract: Single-cell genomics has significantly advanced our understanding of cellular behavior, catalyzing innovations in treatments and precision medicine. However, single-cell sequencing technologies are inherently destructive and can only measure a limited array of data modalities simultaneously. This limitation underscores the need for new methods capable of realigning cells. Optimal transport (OT) has emerged as a potent solution, but traditional discrete solvers are hampered by scalability, privacy, and out-of-sample estimation issues. These challenges have spurred the development of neural network-based solvers, known as neural OT solvers, that parameterize OT maps. Yet, these models often lack the flexibility needed for broader life science applications. To address these deficiencies, our approach learns stochastic maps (i.e. transport plans), allows for any cost function, relaxes mass conservation constraints and integrates quadratic solvers to tackle the complex challenges posed by the (Fused) Gromov-Wasserstein problem. Utilizing flow matching as a backbone, our method offers a flexible and effective framework. We demonstrate its versatility and robustness through applications in cell development studies, cellular drug response modeling, and cross-modality cell translation, illustrating significant potential for enhancing therapeutic strategies.
Related papers
- Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction [0.6501158610800594]
In this study, we leverage single-cell foundation models (FMs) pre-trained on tens of millions of single cells.
We introduce a drug-conditional adapter that allows efficient fine-tuning by training less than 1% of the original foundation model.
arXiv Detail & Related papers (2024-12-18T03:42:20Z) - Reinforcement Learning for Control of Non-Markovian Cellular Population Dynamics [1.03590082373586]
We apply reinforcement learning to identify informed dosing strategies to control cell populations evolving under novel non-Markovian dynamics.
We find that model-free deep RL is able to recover exact solutions and control cell populations even in the presence of long-range temporal dynamics.
arXiv Detail & Related papers (2024-10-11T01:02:30Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - PhagoStat a scalable and interpretable end to end framework for
efficient quantification of cell phagocytosis in neurodegenerative disease
studies [0.0]
We introduce an end-to-end, scalable, and versatile real-time framework for quantifying and analyzing phagocytic activity.
Our proposed pipeline is able to process large data-sets and includes a data quality verification module.
We apply our pipeline to analyze microglial cell phagocytosis in FTD and obtain statistically reliable results.
arXiv Detail & Related papers (2023-04-26T18:10:35Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
Systems biology and systems neurophysiology are powerful tools for a number of key applications in the biomedical sciences.
Recent developments in the field of deep neural networks have demonstrated the possibility of formulating nonlinear, universal approximators.
arXiv Detail & Related papers (2022-09-24T12:51:15Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.